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Aircraft flutter
▶ Coupling between structural dynamics and aerodynamics
▶ Responsible for stability loss and potential structural damage
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Aircraft flutter equation

(s2M + sD + K)x = Q(s, θ)x + Bu and y = Cx,
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Aircraft flutter
▶ Coupling between structural dynamics and aerodynamics
▶ Responsible for stability loss and potential structural damage

Aircraft flutter equation

(s2M + sD + K)x = Q(s, θ)x + Bu and y = Cx,

▶ structural dynamics M, D, K ∈ Rn×n

▶ actuators B ∈ Rn×nu sensors C ∈ Rny×n

▶ generalized aeroelastic forces Q(s, θ) ∈ Cn×n

=⇒ Known
=⇒ Known
=⇒ Discrete knowledge
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Aircraft flutter equation

(s2M + sD + K)x = Q(s, θ)x + Bu and y = Cx,

▶ structural dynamics M, D, K ∈ Rn×n

▶ actuators B ∈ Rn×nu sensors C ∈ Rny×n

▶ generalized aeroelastic forces Q(s, θ) ∈ Cn×n

=⇒ Known
=⇒ Known
=⇒ Discrete knowledge

Generalized forces are partially known

Q(si, θj) for i = 1, . . . , N , j = 1, . . . , M
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Aircraft flutter
▶ Coupling between structural dynamics and aerodynamics
▶ Responsible for stability loss and potential structural damage

Aircraft flutter equation

(s2M + sD + K)x = Q(s, θ)x + Bu and y = Cx,

Complexity
▶ ≈ 100 states
▶ ≈ 100 outputs
▶ ≈ 10 inputs
▶ Q(ıωi, θj), {ωi}10

1 , {θj}30
j=1

A. dos Reis de Souza. [ONERA - 2/20]

Forewords
Problem overview



Aircraft flutter objective and challenges are
▶ to evaluate the flutter occurrence over the frequency/parameter couple,
▶ to prevent it by monitoring the critical damping value, and
▶ to prevent its apparition via feedback control through control surfaces.

Our philosophy

(s2M + sD + K)x = Q(si, θj)x + Bu and y = Cx,

▶ (Rectangular) MIMO pROM in the Loewner framework
▶ Data- and model-driven detection algorithms
▶ Robust control/analysis using H∞ and µ techniques
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Given {µi, vi}, {λj , wj}
data, seek H, s.t.

H(µi) = vi

H(λj) = wj

i = 1, . . . , q; j = 1, . . . , k.

Rational interpolation
H(s) =

W(−sL+M)−1V

▶ underlying rational (r) order

r = rank(ξL−M)
= rank([L,M])
= rank([LH ,MH ]H)

▶ and McMillan (ν) order

ν = rank(L)

▶ L a d M satisfy specific Sylvester equations
▶ Both L and M are input-output independents

A.C. Antoulas, S. Lefteriu and A.C. Ionita, "Ch. 8: A tutorial to the Loewner framework for model
reduction", Model Reduction and Approximation.

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realisation problem",
Linear Algebra and its Applications, 425(2-3), 2007.
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Given {µi, vi}, {λj , wj}
data, seek H, s.t.

H(µi) = vi

H(λj) = wj

i = 1, . . . , q; j = 1, . . . , k.

Rational interpolation
H(s) = CΦ(s)−1B

▶ Non-minimal realization order and McMillan
degree

Where H in Lagrangian basis Lc = 0

H(s) = cw︸︷︷︸
C

[
Ls,λ,k

c

]−1

︸ ︷︷ ︸
Φ(s)−1

[
0
1

]
︸ ︷︷ ︸

B

Ls,λ,k =

 s − λ1 λ2 − s
s − λ1 λ3 − s

...
. . .

 ∈ C(k−1)×k

A.C. Antoulas, S. Lefteriu and A.C. Ionita, "Ch. 8: A tutorial to the Loewner framework for model
reductop,", Model Reduction and Approximation.
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Parametric interpolation problem
Given the data (λi, µk, πj and νl are distinct):

[s1, . . . , sN ] = [λ1, . . . , λn] ∪ [µ1, . . . , µn]
[θ1, . . . , θM ] = [π1, . . . , πm] ∪ [ν1, . . . , νm]

Φ =
[

wij Φ12
Φ21 vkl

]
we seek H(s, θ) = C(θ)(sE − A(θ))−1B(θ) s.t.

H(λi, πj) = wij i = 1 . . . n and j = 1, . . . , m
H(µk, νl) = vT

kl k = 1 . . . n and l = 1, . . . , m

A.C. Ionita and A.C. Antoulas, "Data-Driven Parametrized Model Reduction in the Loewner
Framework", SIAM on Scientific Computing, Vol 36(3).
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[s1, . . . , sN ] = [λ1, . . . , λn] ∪ [µ1, . . . , µn]
[θ1, . . . , θM ] = [π1, . . . , πm] ∪ [ν1, . . . , νm] Φ =

[
wij Φ12
Φ21 vkl

]
p-Loewner

[L2]k,l
i,j =

vkl − wij

(µk − λi)(νl − πj)
[Lλi

] = Loewner of ith row of Φ
[Lπj ] = Loewner of jth column of Φ

L̂2c =

[
L2
Lλ

Lπ

]
c = 0

Rational parametric model

H(s, θ) =

∑n

i=1

∑m

j=1
cij wij

(s−λi)(θ−πj )∑n

i=1

∑m

j=1
cij

(s−λi)(θ−πj )

A.C. Ionita and A.C. Antoulas, "Data-Driven Parametrized Model Reduction in the Loewner
Framework", SIAM on Scientific Computing, Vol 36(3).
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MIMO (right Coprime) realization

E =


Inu −Inu

...
. . .

Inu −Inu

0 0 . . . 0

 and A =


λ1Inu −λ2Inu

...
. . .

λ1Inu −λnInu

−α1(θ) −α2(θ) . . . −αn(θ)


C =

[
β1(θ) β2(θ) . . . βn(θ)

]
and B =

[
0 0 . . . Inu

]T

where

αi(θ) =
m∑

j=1

cijqj(θ) βi(θ) =
m∑

j=1

wijcijqj(θ) qj(θ) =
m∏

j′=1,j′ ̸=i

(θ − πj′ )

T. Vojkovic, D. Quero, C. P-V and P. Vuillemin, "Low-Order Parametric State-Space Modeling of MIMO
Systems in the Loewner Framework", submitted to SIAM.
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G(s, θ) = lT
b (θ)C

(
s2M + sB + K − Q(s, θ)

)−1
Brb(θ) where θ is the flight altitude.
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J. Toledo et al., "Flutter detection using reduced-order dynamic isolation observer", sub. IFAC WC.
A. dos Reis et al., "Aircraft flutter suppression: from a parametric model to robust control", sub. ECC.
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G(s, θ) = lT
b (θ)C

(
s2M + sB + K − Q(s, θ)

)−1
Brb(θ) where θ is the flight altitude.

The rational parametric function that recovers both I/O transfer and its stability
properties is

H(s, θ) = (C + C1θ)(sE − A − A1θ)−1B

J. Toledo et al., "Flutter detection using reduced-order dynamic isolation observer", sub. IFAC WC.
A. dos Reis et al., "Aircraft flutter suppression: from a parametric model to robust control", sub. ECC.
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G(s, θ) = lT
b (θ)C

(
s2M + sB + K − Q(s, θ)

)−1
Brb(θ) where θ is the flight altitude.

The rational parametric function that recovers both I/O transfer and its stability
properties is
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Grounded on simulated data from

H(s, θ) = (C + C1θ)(sE − A − A1θ)−1B

One collects online

Y = [y(t1), y(t2), . . . , y(tN )] ∈ R1×N .

And generates the sampled-time model

Ex(tk + h) = Ax(tk) , y(tk) = Cx(tk) et Ex(t1) = B
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Using the second-order-like model with blended input/output (dynamic isolation):

l⊤H(s)r ≈
b0

s2 + θs + a0

one can design a non-linear observer with an extended state vector:

d

dt

(
x̂1(t)
x̂2(t)
θ̂(t)

)
=

(
0 1 −y(t)
0 0 0
0 0 0

)(
x̂1(t)
x̂2(t)
θ̂(t)

)
+

(
0

b0u(t) − a0y(t)
0

)
−

(
L1(t)
L2(t)
L3(t)

)
(ŷ(t)−y(t))

where θ represents the damping of the system.

Main idea: the dynamics of the estimation error resembles a port-Hamiltonian system.

J. Toledo et al., "Flutter detection using reduced-order dynamic isolation observer", sub. IFAC WC.
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Simulation results: using a fixed θ for design, robustness test against slightly different
ones

Figure: Damping for an altitude θi (blue), for an altitude θi−4 (red) with its estimation (yellow),
and damping for an altitude θi−8 (violet) with its estimation (green).
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LFT form: a open way to robust control

Many constraints: controller type, different frequency bands, stability certificates, etc.

Several tools available: musyn, hinfstruct, robuststab, ...

A. dos Reis et al., "Aircraft flutter suppression: from a parametric model to robust control", sub. ECC.
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Design a parametric, dynamic, output-feedback controller such as

K(θ) :
{

ẋc = Ac(θ)xc + Bc(θ)y
u = Cc(θ)xc

where the parameter-dependent matrices are affine (e.g., Ac(θ) = Ac,0 + Ac,1θ).
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Figure: Open- and closed-loop transfers
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Figure: Open- and closed-loop damping ratios

Robustness analysis: µ ∈ [0.5699, 0.9390] → robust stability against all considered θ.
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▶ Flutter parametric model construction (via LF)
▶ Flutter parametric model allows time-domain
▶ Link with uncertain model
▶ Link with robust control

→ direct impact in engineers life

... still so much to do

Issues
▶ we still don’t known were the exact instability

is → verification against discrete data points
▶ ack, work in collaboration with Airbus
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