Data-driven feedback control design and stability analysis for complex dynamical systems

SIAM CT21

"Model reduction for control of high-dimensional nonlinear systems" invited by B. Kramer

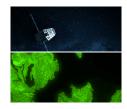
Charles Poussot-Vassal July. 2021

Complex models...

Dynamical models are centrals tools in engineering

Computer-based advanced modelling is crucial

- for verification and validation
 (μ, H_∞-norm, pseudo-spectra, Monte Carlo)
- uncertainty propagation (Multi Disc. Optim., robust optim.)
- ► control synthesis $(\mathcal{H}_{\infty}/\mathcal{H}_2\text{-norm}, \text{MPC}, \text{adaptive})$

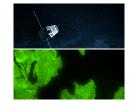


Complex models...

Dynamical models are centrals tools in engineering

Computer-based advanced modelling is crucial

- for verification and validation
 (μ, H_∞-norm, pseudo-spectra, Monte Carlo)
- uncertainty propagation (Multi Disc. Optim., robust optim.)
- ► control synthesis $(\mathcal{H}_{\infty}/\mathcal{H}_2\text{-norm, MPC, adaptive})$



Complex models

important sim. time memory burden inaccurate results limit model class

Complex models...

Dynamical models are centrals tools in engineering

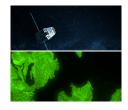
Computer-based advanced modelling is crucial

- for verification and validation
 (μ, H_∞-norm, pseudo-spectra, Monte Carlo)
- uncertainty propagation (Multi Disc. Optim., robust optim.)
- ► control synthesis $(\mathcal{H}_{\infty}/\mathcal{H}_2\text{-norm}, \text{MPC}, \text{ adaptive})$

Complex models

important sim. time memory burden inaccurate results limit model class

Model simplification



Simplified models

- reduced sim. timememory savingaccurate results
 - rational model

Connection with control design / stability

Finite models

spatial meshing of PDE

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

► standard mechanical equations

$$M\ddot{\mathbf{x}}(t) = C\dot{\mathbf{x}}(t) + K\mathbf{x}(t) + B\mathbf{u}(t)$$

structured....

$$(J-H)\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

Infinite models / data

▶ exact solution of linear PDE

$$\mathbf{y}(s) = e^{-\sqrt{s}}\mathbf{u}(s)$$

delays in the loop

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t - \tau) + B\mathbf{u}(t)$$

measurements on setup

$$\mathbf{y}(z_i) = \mathbf{G}\mathbf{u}(z_i)$$

Control design is well established

Control design is more complex to set

Infinite dimensional dynamical models describe a larger class of systems but remains quite difficult to control

Connection with control design / stability

Finite models

▶ spatial meshing of PDE

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

standard mechanical equations

$$M\ddot{\mathbf{x}}(t) = C\dot{\mathbf{x}}(t) + K\mathbf{x}(t) + B\mathbf{u}(t)$$

structured...

$$(J - H)\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

Infinite models / data

▶ exact solution of linear PDE

$$\mathbf{y}(s) = e^{-\sqrt{s}}\mathbf{u}(s)$$

delays in the loop

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t - \tau) + B\mathbf{u}(t)$$

measurements on setup

$$\mathbf{y}(z_i) = \mathbf{G}\mathbf{u}(z_i)$$

Control design is well established

Control design is more complex to set

Infinite dimensional dynamical models describe a larger class of systems but remains quite difficult to control

Connection with control design / stability

Finite models

spatial meshing of PDE

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

standard mechanical equations

$$M\ddot{\mathbf{x}}(t) = C\dot{\mathbf{x}}(t) + K\mathbf{x}(t) + B\mathbf{u}(t)$$

structured....

$$(J - H)\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

Infinite models / data

exact solution of linear PDE

$$\mathbf{y}(s) = e^{-\sqrt{s}}\mathbf{u}(s)$$

delays in the loop

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t - \tau) + B\mathbf{u}(t)$$

measurements on setup

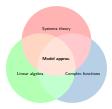
$$\mathbf{y}(z_i) = \mathbf{G}\mathbf{u}(z_i)$$

Control design is well established

Control design is more complex to set

Infinite dimensional dynamical models describe a larger class of systems but remains quite difficult to control

Talk's objectives and messages



Interpolation-based framework is suited for

- for model-based reduction and approximation
- ▶ for data-driven model construction

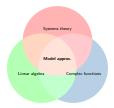
but may also be a pivotal tool for

- data-driven control design and
- stability estimation

of infinite dimensional models and data.

P. Kergus, "Data-driven control of infinite dimensional systems: Application to a continuous crystallizer", IEEE Control Systems Letters.

Talk's objectives and messages



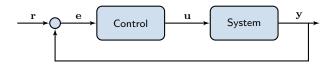
Interpolation-based framework is suited for

- for model-based reduction and approximation
- ▶ for data-driven model construction

but may also be a pivotal tool for

- data-driven control design and
- stability estimation

of infinite dimensional models and data.



P. Kergus, "Data-driven control of infinite dimensional systems: Application to a continuous crystallizer", IEEE Control Systems Letters.

Illustrative examples

#1 transport phenomena

► A linear PDE

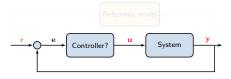
$$\begin{array}{rcl} \tilde{\mathbf{y}}_x(\mathbf{x},t) + 2x\tilde{\mathbf{y}}_t(\mathbf{x},t) & = & 0 \\ \tilde{\mathbf{y}}(\mathbf{x},0) & = & 0 \\ \tilde{\mathbf{y}}(0,t) & = & \frac{1}{\sqrt{t}}*\tilde{\mathbf{u}}_f(0,t) \\ \\ \frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2} \mathbf{u}(0,s) & = & \mathbf{u}_f(0,s), \end{array}$$

▶ **L-DDC** vs. Approximation & \mathcal{H}_{∞} design

#2 pulsed fluidic actuator

- ► No model but excitation signals
- Or too complex model
- ▶ L-DDC design

VRFT paradigm



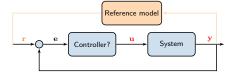
L-DDC Data-Driven Control, involves VRFT that recasts the control synthesis problem as an identification one

- excite the system with u
- collect y output signal
- construct the fictive r reference signal
- ightharpoonup construct $\mathbf{e} = \mathbf{r} \mathbf{y}$
- ightharpoonup identify $e \to u$ or $u \to e$ transfer

 ${f e}
ightarrow {f u}$ is the "Controller" to be identified

M.C. Campi, A. Lecchini and S.M. Savaresi, "Virtual reference feedback tuning: a direct method for the design of feedback controllers", Automatica, 2002.

VRFT paradigm



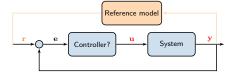
L-DDC Data-Driven Control, involves VRFT that recasts the control synthesis problem as an identification one

- excite the system with u
- collect y output signal
- construct the fictive r reference signal
- ightharpoonup construct e = r y
- \blacktriangleright identify $e \to {\color{red} u}$ or ${\color{red} u} \to e$ transfer

 ${f e}
ightarrow {f u}$ is the "Controller" to be identified

M.C. Campi, A. Lecchini and S.M. Savaresi, "Virtual reference feedback tuning: a direct method for the design of feedback controllers", Automatica, 2002.

VRFT paradigm



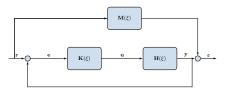
L-DDC Data-Driven Control, involves **VRFT** that recasts the control synthesis problem as an identification one

- excite the system with u
- collect y output signal
- construct the fictive r reference signal
- ightharpoonup construct e = r y
- \blacktriangleright identify $e \to {\color{red} u}$ or ${\color{red} u} \to e$ transfer

$\mathbf{e} \to \mathbf{u}$ is the "Controller" to be identified

M.C. Campi, A. Lecchini and S.M. Savaresi, "Virtual reference feedback tuning: a direct method for the design of feedback controllers", Automatica, 2002.

VRFT paradigm



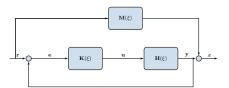
Model-driven VRFT

$$\mathbf{K}^{\star} = \mathbf{H}^{-1}\mathbf{M}(I - \mathbf{M})^{-1}$$

Data-driven VRFT

$$\mathbf{K}^* = \mathbf{H} - \mathbf{I} \mathbf{M} - \left(I - \mathbf{M} - \mathbf{I} \right)^{-1}$$

VRFT paradigm



Model-driven VRFT

$$\mathbf{K}^{\star} = \mathbf{H}^{-1}\mathbf{M}(I - \mathbf{M})^{-1}$$

Data-driven VRFT

$$\mathbf{K}^\star(\pmb{z}_k) = \mathbf{H}(\pmb{z}_k)^{-1}\mathbf{M}(\pmb{z}_k)ig(I-\mathbf{M}(\pmb{z}_k)ig)^{-1}$$
 where $\{\pmb{z}_k\}_{k=1}^N\in\mathbb{C},\,k=1,\ldots,N$

VRFT paradigm

Model-based VRFT

$$\mathbf{K}^{\star}(z_k) = \mathbf{H}(z_k)^{-1} \mathbf{M}(z_k) \Big(I - \mathbf{M}(z_k)\Big)^{-1}$$
 where $\{z_k\}_{k=1}^N \in \mathbb{C}, \ k=1,\ldots,N$

- $ightharpoonup \mathbf{K}^{\star}(z_k)$, ideal controller
- » Loewner framework
- » AAA framework
- + [Formentin/Karimi/...]
- + [Ziegler-Nichols/Aström/...]

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear Algebra and its Applications, 2007.

Y. Nakatsukasa, O. Sete and L.N. Trefethen, "The AAA algorithm for rational approximation", SIAM Journal on Scientific Computing, 2018.

P. Kergus, M. Olivi, C. P-V. and F. Demourant, "From reference model selection to controller validation: application to L-DDC", IEEE L-CSS, 2019.

VRFT paradigm

Model-based VRFT

$$\mathbf{K}^{\star}(z_k) = \mathbf{H}(z_k)^{-1} \mathbf{M}(z_k) \Big(I - \mathbf{M}(z_k)\Big)^{-1}$$
 where $\{z_k\}_{k=1}^N \in \mathbb{C}, \ k=1,\ldots,N$

- $ightharpoonup \mathbf{K}^{\star}(z_k)$, ideal controller
- » Loewner framework
- » AAA framework
- + [Formentin/Karimi/...]
- + [Ziegler-Nichols/Aström/...]

- Interpolation is flexible,
- adaptable to large set of data
- and with no fixed structure

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear Algebra and its Applications, 2007.

Y. Nakatsukasa, O. Sete and L.N. Trefethen, "The AAA algorithm for rational approximation", SIAM Journal on Scientific Computing, 2018.

P. Kergus, M. Olivi, C. P-V. and F. Demourant, "From reference model selection to controller validation: application to L-DDC", IEEE L-CSS, 2019.

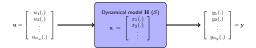
Model vs. Data

Model

- L-ODE
- L-ODE / DAE-1
- L-DAE
- L-DDE
- L-PDE
- B-DAE
- Q-DAE

Data

- Data (time)
- Data (frequency)
 - Data (parametric)



Deals with model and data

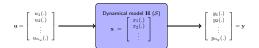
Model

- L-ODE
- L-ODE / DAE-1
 - L-DAE
- L-DDF
- L-PDE
- B-DAE
- Q-DAE

Data

- Data (time)
- Data (frequency)
 - Data (parametric)

 $\begin{array}{ll} \text{(Continuous time-domain)} & \mathcal{S} \sim \mathbf{u} \to \mathbf{x} \to \mathbf{y} \\ \text{(Continuous frequency-domain)} & \mathbf{H} \sim \mathbf{u} \to \mathbf{y} \end{array}$



Interpolation is adapted for many problem, here we focus on Data-Driven Control ones.

Mathematical frame: rational models and approximation

Rational functions...a key ingredient in engineering

Barycentric form (stable and central in Antoulas, Anderson & Mayo landmark)

$$\mathbf{H}(z) = \frac{\sum_{i} \beta_{i}/(z - \lambda_{i})}{\sum_{i} \alpha_{i}/(z - \lambda_{i})}$$

L.N. Trefethen, "Rational functions (von Neumann Prize lecture)", SIAM Annual Meeting, 2020.

A.C. Antoulas, C. Beattie and S. Gugercin, "Interpolatory methods for model reduction", SIAM Computational Science and Engineering, Philadelphia, 2020.

Mathematical frame: rational models and approximation

Rational functions...a key ingredient in engineering

Barycentric form (stable and central in Antoulas, Anderson & Mayo landmark)

$$\mathbf{H}(z) = \frac{\sum_{i} \beta_{i}/(z - \lambda_{i})}{\sum_{i} \alpha_{i}/(z - \lambda_{i})}$$

Support points

Any rational function can be written in the Barycentric form, for any support points λ_i .

A.C. Antoulas, C. Beattie and S. Gugercin, "Interpolatory methods for model reduction", SIAM Computational Science and Engineering, Philadelphia, 2020.

Mathematical frame: rational models and approximation

Rational functions...a key ingredient in engineering

Barycentric form (stable and central in Antoulas, Anderson & Mayo landmark)

$$\mathbf{H}(z) = \frac{\sum_{i} \beta_{i}/(z - \lambda_{i})}{\sum_{i} \alpha_{i}/(z - \lambda_{i})}$$

Support points

Any rational function can be written in the Barycentric form, for any support points λ_i .

Rational function simplification

Interpolation

Basis of rational interpolation, model approximation and model reduction tools.

L.N. Trefethen, "Rational functions (von Neumann Prize lecture)", SIAM Annual Meeting, 2020.

A.C. Antoulas, C. Beattie and S. Gugercin, "Interpolatory methods for model reduction", SIAM Computational Science and Engineering, Philadelphia, 2020.

Loewner model-based approximation (rational interpolation)

Given model \mathbf{H} , seek $\hat{\mathbf{H}}$ s.t.

$$\hat{\mathbf{H}}(\mu_j) = \mathbf{H}(\mu_j)$$

 $\hat{\mathbf{H}}(\lambda_i) = \mathbf{H}(\lambda_i)$

$$i=1,\dots,k;\,j=1,\dots,q.$$

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear Algebra and its Applications, 425(2-3), 2007, pp 634-662.

Loewner model-based approximation (rational interpolation)

Given model \mathbf{H} , seek $\hat{\mathbf{H}}$ s.t.

$$\mathbf{\hat{H}}(\mu_j) = \mathbf{H}(\mu_j)
\mathbf{\hat{H}}(\lambda_i) = \mathbf{H}(\lambda_i)
i = 1, \dots, k; j = 1, \dots, q.$$

$$\mathbb{L} = \begin{bmatrix} \frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1)}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_k)}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{H}(\mu_q) - \mathbf{H}(\lambda_1)}{\mu_q - \lambda_1} & \cdots & \frac{\mathbf{H}(\mu_q) - \mathbf{H}(\lambda_k)}{\mu_q - \lambda_k} \end{bmatrix}$$

$$\mathbb{M} = \begin{bmatrix} \frac{\mu_1 \mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1)\lambda_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mu_1 \mathbf{H}(\mu_1) - \mathbf{H}(\lambda_k)\lambda_k}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mu_q \mathbf{H}(\mu_q) - \mathbf{H}(\lambda_1)\lambda_1}{\mu_q - \lambda_1} & \cdots & \frac{\mu_q \mathbf{H}(\mu_q) - \mathbf{H}(\lambda_k)\lambda_k}{\mu_q - \lambda_k} \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} \mathbf{H}(\lambda_1) & \cdots & \mathbf{H}(\lambda_k) \end{bmatrix}$$

$$\mathbf{V}^T = \begin{bmatrix} \mathbf{H}(\mu_1) & \cdots & \mathbf{H}(\mu_q) \end{bmatrix}$$

 $\hat{\mathbf{H}}(z) = \mathbf{W}(-z\mathbb{L} + \mathbb{M})^{-1}\mathbf{V} \quad \Rightarrow \mathsf{Rational} \; \mathsf{interpolation}$

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", Linear Algebra and its Applications, 425(2-3), 2007, pp 634-662.

Loewner data-based approximation (rational interpolation)

Given
$$\{\mu_j, \mathbf{v}_j\}$$
, $\{\lambda_i, \mathbf{w}_i\}$ data, seek $\hat{\mathbf{H}}$, s.t.
$$\hat{\mathbf{H}}(\mu_j) = \mathbf{v}_j$$

$$\hat{\mathbf{H}}(\lambda_i) = \mathbf{w}_i$$
 $i = 1, \dots, k; \ j = 1, \dots, q.$

$$\mathbb{L} = \begin{bmatrix} \frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1)}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_k)}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{H}(\mu_q) - \mathbf{H}(\lambda_1)}{\mu_q - \lambda_1} & \cdots & \frac{\mathbf{H}(\mu_q) - \mathbf{H}(\lambda_k)}{\mu_q - \lambda_k} \end{bmatrix}$$

$$\mathbb{M} = \begin{bmatrix} \frac{\mu_1 \mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1)\lambda_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mu_1 \mathbf{H}(\mu_1) - \mathbf{H}(\lambda_k)\lambda_k}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mu_q \mathbf{H}(\mu_q) - \mathbf{H}(\lambda_1)\lambda_1}{\mu_q - \lambda_1} & \cdots & \frac{\mu_q \mathbf{H}(\mu_q) - \mathbf{H}(\lambda_k)\lambda_k}{\mu_q - \lambda_k} \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} \mathbf{H}(\lambda_1) & \cdots & \mathbf{H}(\lambda_k) \end{bmatrix}$$

$$\mathbf{V}^T = \begin{bmatrix} \mathbf{H}(\mu_1) & \cdots & \mathbf{H}(\mu_q) \end{bmatrix}$$

D.S. Karachalios, I.V. Gosea, and A.C. Antoulas, "The Loewner Framework for System Identification and Reduction", De Gruyter, Model Reduction Handbook, 2021.

Loewner data-based approximation (rational interpolation)

Given
$$\{\mu_j, \mathbf{v}_j\}$$
, $\{\lambda_i, \mathbf{w}_i\}$ data, seek $\hat{\mathbf{H}}$, s.t.
$$\hat{\mathbf{H}}(\mu_j) = \mathbf{v}_j$$

$$\hat{\mathbf{H}}(\lambda_i) = \mathbf{w}_i$$
 $i = 1, \dots, k; \ j = 1, \dots, q.$

$$\mathbb{L} = \begin{bmatrix} \frac{\mathbf{v}_1 - \mathbf{w}_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{v}_1 - \mathbf{w}_k}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_q - \mathbf{w}_1}{\mu_q - \lambda_1} & \cdots & \frac{\mathbf{v}_q - \mathbf{w}_k}{\mu_q - \lambda_k} \end{bmatrix}$$

$$\mathbb{M} = \begin{bmatrix} \frac{\mu_1 \mathbf{v}_1 - \mathbf{w}_1 \lambda_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mu_1 \mathbf{v}_1 - \mathbf{w}_k \lambda_k}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mu_q \mathbf{v}_q - \mathbf{w}_1 \lambda_1}{\mu_q - \lambda_1} & \cdots & \frac{\mu_q \mathbf{v}_q - \mathbf{w}_k \lambda_k}{\mu_q - \lambda_k} \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \end{bmatrix}$$

$$\mathbf{V}^T = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_q \end{bmatrix}$$

$$\hat{\mathbf{H}}(z) = \mathbf{W}(-z\mathbb{L} + \mathbb{M})^{-1}\mathbf{V} \Rightarrow \mathsf{Rational} \; \mathsf{interpolation} \; \mathsf{(data-driven)}$$

D.S. Karachalios, I.V. Gosea, and A.C. Antoulas, "The Loewner Framework for System Identification and Reduction", De Gruyter, Model Reduction Handbook, 2021.

Wave equation

$$\begin{array}{ccccc} \frac{\partial \tilde{y}(x,t)}{\partial x} + 2x \frac{\partial \tilde{y}(x,t)}{\partial t} & = & 0 & \text{(transport equation)} \\ & \tilde{y}(x,0) & = & 0 & \text{(initial condition)} \\ & & \tilde{y}(0,t) & = & \frac{1}{\sqrt{t}} * \tilde{u}_f(0,t) & \text{(boundary control input)} \\ & & \frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2} u(0,s) & = & u_f(0,s) & \text{(actuator model)} \end{array}$$

Equivalent irrational transfer

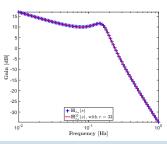
$$\begin{array}{lcl} \mathbf{y}(x,s) & = & \displaystyle \frac{\sqrt{\pi}}{\sqrt{s}} e^{-x^2 s} \frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2} \mathbf{u}(0,s) \\ & = & \mathbf{G}(x,s) \mathbf{u}(0,s) \end{array}$$

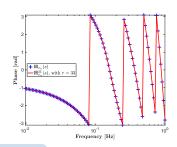
Boundary control and measurement

$$\mathbf{H}_{x_m}(s)\mathbf{u}(s) \leftarrow \mathbf{G}(x_m, s)\mathbf{u}(0, s)$$

Wave equation (a model-based approach)

Construct **Ĥ** using Loewner with

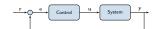




Generalised plant

$$\begin{cases} & \dot{\boldsymbol{\xi}}(t) &= A_{\boldsymbol{\xi}} \boldsymbol{\xi}(t) + B_1 \boldsymbol{r}(t) + B_2 \mathbf{u}(t) \\ & \mathbf{z}(t) &= C_1 \boldsymbol{\xi}(t) + D_{11} \mathbf{r}(t) + D_{12} \mathbf{u}(t) \\ & \mathbf{e}(t) &= \mathbf{r}(t) - \mathbf{y} \end{cases}$$

$$\mathbf{T} = \hat{\mathbf{H}}_{\tau_{m}} \mathbf{W}_{o}$$



Wave equation (a model-based approach)

\mathcal{H}_{∞} -norm minimisation

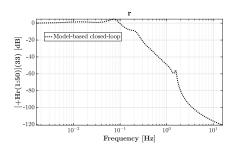
$$\mathbf{K} := \arg\min_{\tilde{\mathbf{K}} \in \mathcal{K}} ||\mathcal{F}_l \left(\mathbf{T_{rz}}, \tilde{\mathbf{K}} \right)||_{\mathcal{H}_{\infty}}$$

$$\mathbf{K}(s) = \left(k_p \!+\! k_i \frac{1}{s}\right) \frac{1}{s/a+1}$$

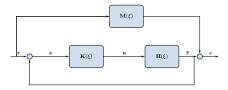
hinfstruct finds

- $k_p = 0.1914$
- $k_i = 0.0251$
- a = 5667.2

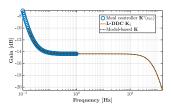
$$\mathbf{K}(s) = \frac{1084.9(s+0.1313)}{s(s+5667)}$$

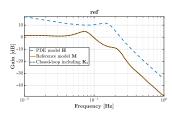


Wave equation (data-driven approach)



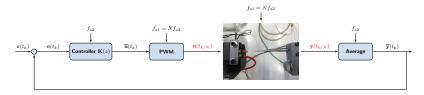
Let $\mathbf{M} \leftarrow \mathbf{T_{rz}}$ and compute **L-DDC**



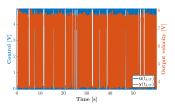


Wave equation

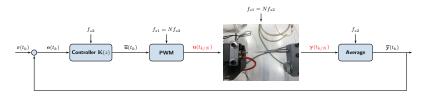
Pulsed fluidic actuator

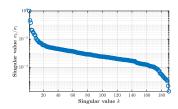


- PFA are ON / OFF actuators,
- blowing air only,
- to modify the pressure,
- measured by a hot wire



Pulsed fluidic actuator





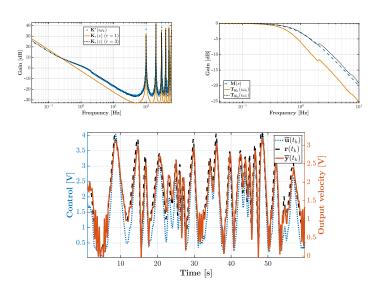
\mathbf{K}^{\star}

and Loewner

- Singular values
- sharp drop,
- r=3 is enough
- r = 1 leads to integrator
 Sufficient for stability proof of this positive system

C. Briat, "A biology-inspired approach to the positive integral control of positive systems: The antithetic, exponential, and logistic integral controllers", SIAM J. Appl. Dyn. Syst., 2020.

Pulsed fluidic actuator



Stability

Projection idea

$$\mathbf{H}(s, \mathbf{p}) = \frac{1}{s + e^{-\mathbf{p}s}}$$

Theoretical stability limit $p = \pi/2$

M. Kohler, "On the closest stable descriptor system in the respective spaces \mathcal{RH}_2 and \mathcal{RH}_∞ ", Linear Algebra and its Applications, 2014, Vol. 443, pp. 34-49.

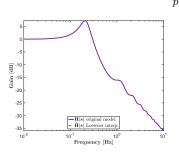
Stability

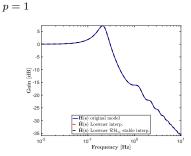
Projection idea

$$\mathbf{H}(s, \mathbf{p}) = \frac{1}{s + e^{-\mathbf{p}s}}$$

Theoretical stability limit $p = \pi/2$

 $Hr = mor.lti(\{w,FR\},[])$



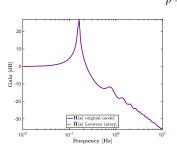


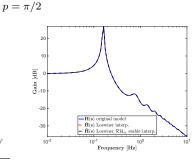
M. Kohler, "On the closest stable descriptor system in the respective spaces \mathcal{RH}_2 and \mathcal{RH}_{∞} ", Linear Algebra and its Applications, 2014, Vol. 443, pp. 34-49.

Projection idea

$$\mathbf{H}(s, \mathbf{p}) = \frac{1}{s + e^{-\mathbf{p}s}}$$

Theoretical stability limit $p = \pi/2$





M. Kohler, "On the closest stable descriptor system in the respective spaces \mathcal{RH}_2 and \mathcal{RH}_∞ ", Linear Algebra and its Applications, 2014, Vol. 443, pp. 34-49.

Projection idea

$$\mathbf{H}(s, \mathbf{p}) = \frac{1}{s + e^{-\mathbf{p}s}}$$

Theoretical stability limit $p = \pi/2$

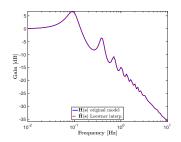
$$H = Q(s) 1./(s+exp(-p*s))$$

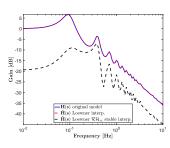
 $W = logspace(-2,1,100)*2*pi$

FR = mor.bode(H,w)

Hr = mor.lti({w,FR},[])

$$p = \pi$$





M. Kohler, "On the closest stable descriptor system in the respective spaces \mathcal{RH}_2 and \mathcal{RH}_∞ ", Linear Algebra and its Applications, 2014, Vol. 443, pp. 34-49.

\mathcal{L}_2 functions stability rationale

How to address the stability of any $\mathbf{H} \in \mathcal{L}_2$?

Proposed statement

- Given H∈ L₂, it is possible to find H∈ RL₂ that well reproduces H, whatever
 the complexity of H is, if we can arbitrarily increase r = dim(Ĥ).
 - \Rightarrow Can be obtained by increasing the Loewner matrix up to numerical rank loss.
- 2. If, based on an unstable realisation of $\hat{\mathbf{H}} \in \mathcal{RL}_2$, the optimal stable approximant $\hat{\mathbf{H}}_s \in \mathcal{RH}_{\infty}$ is close enough to $\hat{\mathbf{H}} \in \mathcal{RL}_2$, in the sense of the \mathcal{L}_{∞} -norm, then $\hat{\mathbf{H}}$ is stable and, following previous statement (1.), \mathbf{H} is stable too.
 - \Rightarrow Can be achieved by a rational stable approxim
 - \Rightarrow ... and a norm computation which threshold is fixed to machine precision

[&]amp; C. P-V., P. Kergus and P. Vuillemin, "Interpolation-based irrational model control design and stability analysis", Springer, arXiv:2012.01040.

 \mathcal{L}_2 functions stability rationale

How to address the stability of any $\mathbf{H} \in \mathcal{L}_2$?

Proposed statement

- 1. Given $\mathbf{H} \in \mathcal{L}_2$, it is possible to find $\hat{\mathbf{H}} \in \mathcal{RL}_2$ that well reproduces \mathbf{H} , whatever the complexity of \mathbf{H} is, if we can arbitrarily increase $r = \mathbf{dim}(\hat{\mathbf{H}})$.
 - \Rightarrow Can be obtained by increasing the Loewner matrix up to numerical rank loss.
- 2. If, based on an unstable realisation of $\hat{\mathbf{H}} \in \mathcal{RL}_2$, the optimal stable approximant $\hat{\mathbf{H}}_s \in \mathcal{RH}_\infty$ is close enough to $\hat{\mathbf{H}} \in \mathcal{RL}_2$, in the sense of the \mathcal{L}_∞ -norm, then $\hat{\mathbf{H}}$ is stable and, following previous statement (1.), \mathbf{H} is stable too.
 - ⇒ ... and a norm computation which threshold is fixed to machine precision

$$\mathbf{H} \in \mathcal{L}_2 \quad \xrightarrow{\mathtt{Loewner}} \quad \mathbf{\hat{H}} \in \mathcal{RL}_2$$

[&]amp; C. P-V., P. Kergus and P. Vuillemin, "Interpolation-based irrational model control design and stability analysis", Springer, arXiv:2012.01040.

 \mathcal{L}_2 functions stability rationale

How to address the stability of any $\mathbf{H} \in \mathcal{L}_2$?

Proposed statement

- 1. Given $\mathbf{H} \in \mathcal{L}_2$, it is possible to find $\hat{\mathbf{H}} \in \mathcal{RL}_2$ that well reproduces \mathbf{H} , whatever the complexity of \mathbf{H} is, if we can arbitrarily increase $r = \mathbf{dim}(\hat{\mathbf{H}})$.
 - \Rightarrow Can be obtained by increasing the Loewner matrix up to numerical rank loss.
- 2. If, based on an unstable realisation of $\hat{\mathbf{H}} \in \mathcal{RL}_2$, the optimal stable approximant $\hat{\mathbf{H}}_s \in \mathcal{RH}_{\infty}$ is close enough to $\hat{\mathbf{H}} \in \mathcal{RL}_2$, in the sense of the \mathcal{L}_{∞} -norm, then $\hat{\mathbf{H}}$ is stable and, following previous statement (1.), \mathbf{H} is stable too.
 - \Rightarrow Can be achieved by a rational stable approximation...
 - \Rightarrow ... and a norm computation which threshold is fixed to machine precision.

$$\begin{split} \mathbf{H} \in \mathcal{L}_2 & \xrightarrow{\text{Loewner}} & \hat{\mathbf{H}} \in \mathcal{RL}_2 & \xrightarrow{\mathcal{RH}_\infty} & \hat{\mathbf{H}}_s \in \mathcal{RH}_\infty & \xrightarrow{\mathcal{L}_\infty} & ||\hat{\mathbf{H}}_s - \hat{\mathbf{H}}||_{\mathcal{L}_\infty} \\ & \downarrow & \\ & \text{stable (< ε)} \\ & \text{unstable (otherwise)} \end{split}$$

[&]amp; C. P-V., P. Kergus and P. Vuillemin, "Interpolation-based irrational model control design and stability analysis", Springer, arXiv:2012.01040.

 \mathcal{L}_2 functions stability rationale

$$\mathbf{H}(s, \mathbf{p}) = \frac{1}{s + e^{-\mathbf{p}s}}$$

Theoretical stability limit $p=\pi/2$

 \mathcal{L}_2 functions stability rationale

$$\mathbf{H}(s, \mathbf{p}) = \frac{1}{s + e^{-\mathbf{p}s}}$$

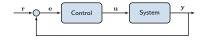
Theoretical stability limit $p=\pi/2$

 \mathcal{L}_2 functions stability rationale (wave equation)

► Model - PI

$$\mathbf{H}(x,s) = \frac{\sqrt{\pi}}{\sqrt{s}}e^{-x^2s}\frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2}$$

$$\mathbf{K}(0,s) \to \mathbf{PI}$$



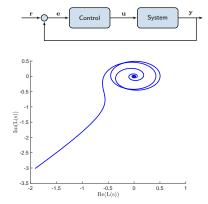
\mathcal{L}_2 functions stability rationale (wave equation)

► Model - PI

$$\mathbf{H}(x,s) = \frac{\sqrt{\pi}}{\sqrt{s}} e^{-x^2 s} \frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2}$$

$$\mathbf{K}(0,s) \to \mathbf{PI}$$

Closed-loop
W = logspace(-3,.2,300)*2*pi;
L = @(s) H(s,x)*K(s);
BF = @(s) L(s)./ (1+L(s));
W = logspace(-3,.5,300)*2*pi;
mor.stability(BF,W)



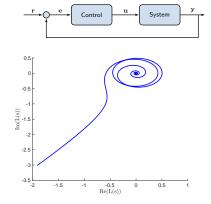
\mathcal{L}_2 functions stability rationale (wave equation)

► Model - PI

$$\mathbf{H}(x,s) = \frac{\sqrt{\pi}}{\sqrt{s}} e^{-x^2 s} \frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2}$$

$$\mathbf{K}(0,s) \to \mathbf{PI}$$

Closed-loop
W = logspace(-3,.2,300)*2*pi;
L = @(s) H(s,x)*K(s);
BF = @(s) L(s)./(1+L(s));
W = logspace(-3,.5,300)*2*pi;
mor.stability(BF,W)



»9.8732e-12

Conclusions

What to keep in mind...

Interpolation-based methods are remarkably versatile and indicated for

- model reduction and approximation,
- ► AND control design
- ► AND complex function stability analysis
 - \rightarrow direct impact in simulation engineers
 - ightarrow in practice complete proof is not ready but may be a staring point...

Conclusions

What to keep in mind...

Interpolation-based methods are remarkably versatile and indicated for

- model reduction and approximation,
- ► AND control design
- ► AND complex function stability analysis
 - \rightarrow direct impact in simulation engineers
 - ightarrow in practice complete proof is not ready but may be a staring point...

- ► Technical references and slides at sites.google.com/site/charlespoussotvassal/
- ► MOR Toolbox integrated tool at mordigital systems.fr/

Data-driven feedback control design and stability analysis for complex dynamical systems

SIAM CT21

"Model reduction for control of high-dimensional nonlinear systems" invited by B. Kramer

Charles Poussot-Vassal July. 2021

