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Dynamical models are centrals tools in engineering

Computer-based advanced modelling is crucial
I for verification and validation

(µ, H∞-norm, pseudo-spectra, Monte Carlo)
I uncertainty propagation

(Multi Disc. Optim., robust optim.)
I control synthesis

(H∞/H2-norm, MPC, adaptive)
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Dynamical models are centrals tools in engineering

Computer-based advanced modelling is crucial
I for verification and validation

(µ, H∞-norm, pseudo-spectra, Monte Carlo)
I uncertainty propagation

(Multi Disc. Optim., robust optim.)
I control synthesis

(H∞/H2-norm, MPC, adaptive)

Complex models
I important sim. time
I memory burden
I inaccurate results
I limit model class

⇒
Model simplification

Simplified models
I reduced sim. time
I memory saving
I accurate results
I rational model
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Finite models
I spatial meshing of PDE

ẋ(t) = Ax(t) +Bu(t)

I standard mechanical equations

M ẍ(t) = Cẋ(t) +Kx(t) +Bu(t)

I structured....

(J −H)ẋ(t) = Ax(t) +Bu(t)

Infinite models / data
I exact solution of linear PDE

y(s) = e−
√
su(s)

I delays in the loop

ẋ(t) = Ax(t− τ) +Bu(t)

I measurements on setup

y(zi) = Gu(zi)

Control design is well established Control design is more complex to set

Infinite dimensional dynamical models describe a larger class of systems
but remains quite difficult to control
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M ẍ(t) = Cẋ(t) +Kx(t) +Bu(t)

I structured....

(J −H)ẋ(t) = Ax(t) +Bu(t)

Infinite models / data
I exact solution of linear PDE

y(s) = e−
√
su(s)

I delays in the loop
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Systems theory

Linear algebra Complex functions

Model approx.

Interpolation-based framework is suited for
I for model-based reduction and approximation
I for data-driven model construction

but may also be a pivotal tool for
I data-driven control design and
I stability estimation

of infinite dimensional models and data.

P. Kergus, "Data-driven control of infinite dimensional systems: Application to a continuous crystallizer",
IEEE Control Systems Letters.
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Model approx.

Interpolation-based framework is suited for
I for model-based reduction and approximation
I for data-driven model construction

but may also be a pivotal tool for
I data-driven control design and
I stability estimation

of infinite dimensional models and data.

Control Systemur e y

P. Kergus, "Data-driven control of infinite dimensional systems: Application to a continuous crystallizer",
IEEE Control Systems Letters.
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#1 transport phenomena
I A linear PDE

ỹx(x, t) + 2xỹt(x, t) = 0
ỹ(x, 0) = 0
ỹ(0, t) = 1√

t
∗ ũf (0, t)

ω2
0

s2+mω0s+ω2
0

u(0, s) = uf (0, s),

I L-DDC vs. Approximation & H∞ design

#2 pulsed fluidic actuator
I No model but excitation signals
I Or too complex model
I L-DDC design
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Controller? Systemur e y

Reference model

L-DDC Data-Driven Control, involves VRFT that recasts the control synthesis problem
as an identification one

I excite the system with u
I collect y output signal
I construct the fictive r reference signal
I construct e = r− y
I identify e→ u or u→ e transfer

e→ u is the "Controller" to be identified

M.C. Campi, A. Lecchini and S.M. Savaresi, "Virtual reference feedback tuning: a direct method for the
design of feedback controllers", Automatica, 2002.

C. Poussot-Vassal [ONERA - 6/27]

Data-driven control
VRFT paradigm



Controller? Systemur e y

Reference model

L-DDC Data-Driven Control, involves VRFT that recasts the control synthesis problem
as an identification one

I excite the system with u
I collect y output signal
I construct the fictive r reference signal
I construct e = r− y
I identify e→ u or u→ e transfer

e→ u is the "Controller" to be identified

M.C. Campi, A. Lecchini and S.M. Savaresi, "Virtual reference feedback tuning: a direct method for the
design of feedback controllers", Automatica, 2002.

C. Poussot-Vassal [ONERA - 6/27]

Data-driven control
VRFT paradigm



Controller? Systemur e y

Reference model

L-DDC Data-Driven Control, involves VRFT that recasts the control synthesis problem
as an identification one

I excite the system with u
I collect y output signal
I construct the fictive r reference signal
I construct e = r− y
I identify e→ u or u→ e transfer

e→ u is the "Controller" to be identified

M.C. Campi, A. Lecchini and S.M. Savaresi, "Virtual reference feedback tuning: a direct method for the
design of feedback controllers", Automatica, 2002.

C. Poussot-Vassal [ONERA - 6/27]

Data-driven control
VRFT paradigm



K(ξ) H(ξ)

M(ξ)

ur e y ε

Model-driven VRFT

K? = H−1M(I −M)−1

Data-driven VRFT

K?(zk) = H(zk)−1M(zk)
(
I −M(zk)

)−1

where {zk}Nk=1 ∈ C, k = 1, . . . , N
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Model-based VRFT

K?(zk) = H(zk)−1M(zk)
(
I −M(zk)

)−1

where {zk}Nk=1 ∈ C, k = 1, . . . , N

I K?(zk), ideal controller
» Loewner framework
» AAA framework

+ [Formentin/Karimi/...]
+ [Ziegler-Nichols/Aström/...]

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem",
Linear Algebra and its Applications, 2007.

Y. Nakatsukasa, O. Sete and L.N. Trefethen, "The AAA algorithm for rational approximation", SIAM
Journal on Scientific Computing, 2018.

P. Kergus, M. Olivi, C. P-V. and F. Demourant, "From reference model selection to controller validation:
application to L-DDC ", IEEE L-CSS, 2019.
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Model-based VRFT

K?(zk) = H(zk)−1M(zk)
(
I −M(zk)

)−1

where {zk}Nk=1 ∈ C, k = 1, . . . , N

I K?(zk), ideal controller
» Loewner framework
» AAA framework

+ [Formentin/Karimi/...]
+ [Ziegler-Nichols/Aström/...]

I Interpolation is flexible,
I adaptable to large set of data
I and with no fixed structure

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem",
Linear Algebra and its Applications, 2007.

Y. Nakatsukasa, O. Sete and L.N. Trefethen, "The AAA algorithm for rational approximation", SIAM
Journal on Scientific Computing, 2018.

P. Kergus, M. Olivi, C. P-V. and F. Demourant, "From reference model selection to controller validation:
application to L-DDC ", IEEE L-CSS, 2019.
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Model
I L-ODE
I L-ODE / DAE-1
I L-DAE

I L-DDE
I L-PDE

I B-DAE
I Q-DAE

Data
I Data (time)
I Data (frequency)
I Data (parametric)

(Continuous time-domain) S ∼ u→ x→ y
(Continuous frequency-domain) H ∼ u→ y

Dynamical model H (S)

x =

 x1(.)
x2(.)
...




y1(.)
y2(.)
...

yny (.)

 = yu =


u1(.)
u2(.)
...

unu (.)



(Discrete time-domain) {ti,G(ti)}Ni=1
(Discrete frequency-domain) {zi,G(zi)}Ni=1
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Model
I L-ODE
I L-ODE / DAE-1
I L-DAE

I L-DDE
I L-PDE

I B-DAE
I Q-DAE

Data
I Data (time)
I Data (frequency)
I Data (parametric)

(Continuous time-domain) S ∼ u→ x→ y
(Continuous frequency-domain) H ∼ u→ y

Dynamical model H (S)

x =

 x1(.)
x2(.)
...




y1(.)
y2(.)
...

yny (.)

 = yu =


u1(.)
u2(.)
...

unu (.)



(Discrete time-domain) {ti,G(ti)}Ni=1
(Discrete frequency-domain) {zi,G(zi)}Ni=1

Interpolation is adapted for many problem, here we
focus on Data-Driven Control ones.
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Rational functions. . . a key ingredient in engineering

Barycentric form (stable and central in Antoulas, Anderson & Mayo landmark)

H(z) =

∑
i
βi/(z − λi)∑

i
αi/(z − λi)

L.N. Trefethen, "Rational functions (von Neumann Prize lecture)", SIAM Annual Meeting, 2020.
A.C. Antoulas, C. Beattie and S. Gugercin, "Interpolatory methods for model reduction", SIAM

Computational Science and Engineering, Philadelphia, 2020.
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Rational functions. . . a key ingredient in engineering

Barycentric form (stable and central in Antoulas, Anderson & Mayo landmark)

H(z) =

∑
i
βi/(z − λi)∑

i
αi/(z − λi)

Support points
Any rational function can
be written in the Barycen-
tric form, for any support
points λi.

⇒
Rational function
simplification

Interpolation
Basis of rational interpo-
lation, model approxima-
tion and model reduction
tools.

L.N. Trefethen, "Rational functions (von Neumann Prize lecture)", SIAM Annual Meeting, 2020.
A.C. Antoulas, C. Beattie and S. Gugercin, "Interpolatory methods for model reduction", SIAM

Computational Science and Engineering, Philadelphia, 2020.
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Given model H, seek Ĥ
s.t.

Ĥ(µj) = H(µj)
Ĥ(λi) = H(λi)

i = 1, . . . , k; j = 1, . . . , q.

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem",
Linear Algebra and its Applications, 425(2-3), 2007, pp 634-662.
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Given model H, seek Ĥ
s.t.

Ĥ(µj) = H(µj)
Ĥ(λi) = H(λi)

i = 1, . . . , k; j = 1, . . . , q.

L =


H(µ1)−H(λ1)

µ1−λ1
. . .

H(µ1)−H(λk)
µ1−λk

...
. . .

...
H(µq)−H(λ1)

µq−λ1
. . .

H(µq)−H(λk)
µq−λk



M =


µ1H(µ1)−H(λ1)λ1

µ1−λ1
. . .

µ1H(µ1)−H(λk)λk
µ1−λk

...
. . .

...
µqH(µq)−H(λ1)λ1

µq−λ1
. . .

µqH(µq)−H(λk)λk

µq−λk


W =

[
H(λ1) . . . H(λk)

]
VT =

[
H(µ1) . . . H(µq)

]
Ĥ(z) = W(−zL+M)−1V ⇒ Rational interpolation

A.J. Mayo and A.C. Antoulas, "A framework for the solution of the generalized realization problem",
Linear Algebra and its Applications, 425(2-3), 2007, pp 634-662.
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Given {µj ,vj}, {λi,wi}
data, seek Ĥ, s.t.

Ĥ(µj) = vj
Ĥ(λi) = wi

i = 1, . . . , k; j = 1, . . . , q.

L =


H(µ1)−H(λ1)

µ1−λ1
. . .

H(µ1)−H(λk)
µ1−λk

...
. . .

...
H(µq)−H(λ1)

µq−λ1
. . .

H(µq)−H(λk)
µq−λk



M =


µ1H(µ1)−H(λ1)λ1

µ1−λ1
. . .

µ1H(µ1)−H(λk)λk
µ1−λk

...
. . .

...
µqH(µq)−H(λ1)λ1

µq−λ1
. . .

µqH(µq)−H(λk)λk

µq−λk


W =

[
H(λ1) . . . H(λk)

]
VT =

[
H(µ1) . . . H(µq)

]

D.S. Karachalios, I.V. Gosea, and A.C. Antoulas, "The Loewner Framework for System Identification and
Reduction", De Gruyter, Model Reduction Handbook, 2021.
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Given {µj ,vj}, {λi,wi}
data, seek Ĥ, s.t.

Ĥ(µj) = vj
Ĥ(λi) = wi

i = 1, . . . , k; j = 1, . . . , q.

L =


v1−w1
µ1−λ1

. . .
v1−wk
µ1−λk

...
. . .

...
vq−w1
µq−λ1

. . .
vq−wk

µq−λk



M =


µ1v1−w1λ1
µ1−λ1

. . .
µ1v1−wkλk
µ1−λk

...
. . .

...
µqvq−w1λ1
µq−λ1

. . .
µqvq−wkλk

µq−λk


W =

[
w1 . . . wk

]
VT =

[
v1 . . . vq

]
Ĥ(z) = W(−zL+M)−1V ⇒ Rational interpolation (data-driven)

D.S. Karachalios, I.V. Gosea, and A.C. Antoulas, "The Loewner Framework for System Identification and
Reduction", De Gruyter, Model Reduction Handbook, 2021.
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∂ỹ(x, t)
∂x

+ 2x
∂ỹ(x, t)
∂t

= 0 (transport equation)
ỹ(x, 0) = 0 (initial condition)
ỹ(0, t) =

1
√
t
∗ ũf (0, t) (boundary control input)

ω2
0

s2 +mω0s+ ω2
0
u(0, s) = uf (0, s) (actuator model)

Equivalent irrational transfer

y(x, s) =
√
π
√
s
e−x

2s ω2
0

s2 +mω0s+ ω2
0

u(0, s)

= G(x, s)u(0, s)

Boundary control and measurement

Hxm (s)u(s)← G(xm, s)u(0, s)

Control Systemur e y
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Construct Ĥ using Loewner with

10-2 10-1 100

-30

-25

-20

-15

-10

-5

0

5

10

15

10-2 10-1 100
-3

-2

-1

0

1

2

3

Generalised plant{
ξ̇(t) = Aξξ(t) +B1r(t) +B2u(t)
z(t) = C1ξ(t) +D11r(t) +D12u(t)
e(t) = r(t)− y

T = Ĥxm
Wo

Control Systemur e y

C. Poussot-Vassal [ONERA - 15/27]

Numerical and experimental examples
Wave equation (a model-based approach)



H∞-norm minimisation

K := arg min
K̃∈K

||Fl
(

Trz, K̃
)
||H∞

K(s) =
(
kp+ki

1
s

) 1
s/a+ 1

hinfstruct finds
I kp = 0.1914
I ki = 0.0251
I a = 5667.2

K(s) =
1084.9(s+ 0.1313)

s(s+ 5667)
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Numerical and experimental examples
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K(ξ) H(ξ)

M(ξ)

ur e y ε

Let M← Trz and compute L-DDC
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Numerical and experimental examples
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Controller K(z)

fs2

PWM

fs1 = Nfs2

fs1 = Nfs2

Average

fs2

u(tk) y(tk/N )r(tk) e(tk) u(tk/N ) y(tk)

I PFA are ON / OFF actuators,
I blowing air only,
I to modify the pressure,
I measured by a hot wire

C. P-V., P. Kergus, F. Kerhervé, D. Sipp, and L. Cordier, "Interpolatory-based data-driven pulsed fluidic
actuator control design and experimental validation", IEEE transactions on Control Systems Technology, 2021.
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Controller K(z)

fs2

PWM

fs1 = Nfs2

fs1 = Nfs2

Average

fs2

u(tk) y(tk/N )r(tk) e(tk) u(tk/N ) y(tk)

K?

and Loewner
I Singular values
I sharp drop,
I r = 3 is enough
I r = 1 leads to integrator

Sufficient for stability proof of
this positive system

C. Briat, "A biology-inspired approach to the positive integral control of positive systems: The antithetic,
exponential, and logistic integral controllers", SIAM J. Appl. Dyn. Syst., 2020..

C. Poussot-Vassal [ONERA - 20/27]

Numerical and experimental examples
Pulsed fluidic actuator



C. Poussot-Vassal [ONERA - 21/27]

Numerical and experimental examples
Pulsed fluidic actuator



H(s, p) =
1

s+ e−ps

Theoretical stability limit p = π/2

H = @(s) 1./(s+exp(-p*s))
w = logspace(-2,1,100)*2*pi
FR = mor.bode(H,w)
Hr = mor.lti({w,FR},[])

M. Kohler, "On the closest stable descriptor system in the respective spaces RH2 and RH∞", Linear
Algebra and its Applications, 2014, Vol. 443, pp. 34-49.
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H(s, p) =
1

s+ e−ps

Theoretical stability limit p = π/2

H = @(s) 1./(s+exp(-p*s))
w = logspace(-2,1,100)*2*pi
FR = mor.bode(H,w)
Hr = mor.lti({w,FR},[])

p = 1
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M. Kohler, "On the closest stable descriptor system in the respective spaces RH2 and RH∞", Linear
Algebra and its Applications, 2014, Vol. 443, pp. 34-49.
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H(s, p) =
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H = @(s) 1./(s+exp(-p*s))
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H(s, p) =
1

s+ e−ps

Theoretical stability limit p = π/2

H = @(s) 1./(s+exp(-p*s))
w = logspace(-2,1,100)*2*pi
FR = mor.bode(H,w)
Hr = mor.lti({w,FR},[])

p = π
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Algebra and its Applications, 2014, Vol. 443, pp. 34-49.
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How to address the stability of any H ∈ L2?
Proposed statement

1. Given H ∈ L2, it is possible to find Ĥ ∈ RL2 that well reproduces H, whatever
the complexity of H is, if we can arbitrarily increase r = dim(Ĥ).
⇒ Can be obtained by increasing the Loewner matrix up to numerical rank loss.

2. If, based on an unstable realisation of Ĥ ∈ RL2, the optimal stable approximant
Ĥs ∈ RH∞ is close enough to Ĥ ∈ RL2, in the sense of the L∞-norm, then Ĥ
is stable and, following previous statement (1.), H is stable too.
⇒ Can be achieved by a rational stable approximation...
⇒ ... and a norm computation which threshold is fixed to machine precision.

C. P-V., P. Kergus and P. Vuillemin, "Interpolation-based irrational model control design and stability
analysis", Springer, arXiv:2012.01040.
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How to address the stability of any H ∈ L2?
Proposed statement

1. Given H ∈ L2, it is possible to find Ĥ ∈ RL2 that well reproduces H, whatever
the complexity of H is, if we can arbitrarily increase r = dim(Ĥ).
⇒ Can be obtained by increasing the Loewner matrix up to numerical rank loss.

2. If, based on an unstable realisation of Ĥ ∈ RL2, the optimal stable approximant
Ĥs ∈ RH∞ is close enough to Ĥ ∈ RL2, in the sense of the L∞-norm, then Ĥ
is stable and, following previous statement (1.), H is stable too.
⇒ Can be achieved by a rational stable approximation...
⇒ ... and a norm computation which threshold is fixed to machine precision.

H ∈ L2
Loewner−−−−−→ Ĥ ∈ RL2

C. P-V., P. Kergus and P. Vuillemin, "Interpolation-based irrational model control design and stability
analysis", Springer, arXiv:2012.01040.
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How to address the stability of any H ∈ L2?
Proposed statement

1. Given H ∈ L2, it is possible to find Ĥ ∈ RL2 that well reproduces H, whatever
the complexity of H is, if we can arbitrarily increase r = dim(Ĥ).
⇒ Can be obtained by increasing the Loewner matrix up to numerical rank loss.

2. If, based on an unstable realisation of Ĥ ∈ RL2, the optimal stable approximant
Ĥs ∈ RH∞ is close enough to Ĥ ∈ RL2, in the sense of the L∞-norm, then Ĥ
is stable and, following previous statement (1.), H is stable too.
⇒ Can be achieved by a rational stable approximation...
⇒ ... and a norm computation which threshold is fixed to machine precision.

H ∈ L2
Loewner−−−−−→ Ĥ ∈ RL2

RH∞−−−−→
proj.

Ĥs ∈ RH∞
L∞−−−→
norm

||Ĥs − Ĥ||L∞

↓
stable (< ε)

unstable (otherwise)

C. P-V., P. Kergus and P. Vuillemin, "Interpolation-based irrational model control design and stability
analysis", Springer, arXiv:2012.01040.
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H(s, p) =
1

s+ e−ps

Theoretical stability limit p = π/2

H = @(s) 1./(s+exp(-p*s))
w = logspace(-2,1,100)*2*pi
stabTag = mor.stability(H,w)
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I Model - PI

H(x, s) =
√
π
√
s
e−x

2s ω2
0

s2 +mω0s+ ω2
0

K(0, s)→ PI
Control Systemur e y
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I Model - PI

H(x, s) =
√
π
√
s
e−x

2s ω2
0

s2 +mω0s+ ω2
0

K(0, s)→ PI

I Closed-loop
W = logspace(-3,.2,300)*2*pi;
L = @(s) H(s,x)*K(s);
BF = @(s) L(s)./ (1+L(s));
W = logspace(-3,.5,300)*2*pi;
mor.stability(BF,W)

Control Systemur e y
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I Model - PI

H(x, s) =
√
π
√
s
e−x

2s ω2
0

s2 +mω0s+ ω2
0

K(0, s)→ PI

I Closed-loop
W = logspace(-3,.2,300)*2*pi;
L = @(s) H(s,x)*K(s);
BF = @(s) L(s)./ (1+L(s));
W = logspace(-3,.5,300)*2*pi;
mor.stability(BF,W)

»9.8732e-12
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Interpolation-based methods are remarkably versatile and indicated for
I model reduction and approximation,
I AND control design
I AND complex function stability analysis

→ direct impact in simulation engineers
→ in practice complete proof is not ready but may be a staring point...
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Interpolation-based methods are remarkably versatile and indicated for
I model reduction and approximation,
I AND control design
I AND complex function stability analysis

→ direct impact in simulation engineers
→ in practice complete proof is not ready but may be a staring point...

I Technical references and slides at
sites.google.com/site/charlespoussotvassal/

I MOR Toolbox integrated tool at
mordigitalsystems.fr/
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