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Abstract. \mathrm{T}\mathrm{h}\mathrm{e} \mathrm{L}\mathrm{o}\mathrm{e}\mathrm{w}\mathrm{n}\mathrm{e}\mathrm{r} \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k} \mathrm{i}\mathrm{s} \mathrm{a}\mathrm{n} \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{y} \mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{a}\mathrm{c}\mathrm{h} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{a}\mathrm{n}\mathrm{d}
\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{s}. \mathrm{T}\mathrm{h}\mathrm{e} \mathrm{p}\mathrm{u}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e} \mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e} \mathrm{i}\mathrm{s} \mathrm{t}\mathrm{o} \mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d} \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s} \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k} \mathrm{t}\mathrm{o} \mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c} \mathrm{s}\mathrm{y}\mathrm{s}-
\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{s} \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} \mathrm{a}\mathrm{n} \mathrm{a}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{y} \mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r} n \mathrm{o}\mathrm{f} \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}. \mathrm{T}\mathrm{o} \mathrm{a}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{e}\mathrm{v}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s}, \mathrm{a} \mathrm{n}\mathrm{e}\mathrm{w} \mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d} \mathrm{m}\mathrm{u}\mathrm{l}-
\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{i}\mathrm{s} \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{d}. \mathrm{W}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n} \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{e} n-\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}
\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e} \mathrm{L}\mathrm{o}\mathrm{e}\mathrm{w}\mathrm{n}\mathrm{e}\mathrm{r} \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{s}\mathrm{h}\mathrm{o}\mathrm{w} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{y} \mathrm{c}\mathrm{a}\mathrm{n} \mathrm{b}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{s}\mathrm{o}\mathrm{l}\mathrm{v}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{a} \mathrm{s}\mathrm{e}\mathrm{t}
\mathrm{o}\mathrm{f} \mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{d} \mathrm{S}\mathrm{y}\mathrm{l}\mathrm{v}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{r} \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}. \mathrm{T}\mathrm{h}\mathrm{e} \mathrm{n}\mathrm{u}\mathrm{l}\mathrm{l} \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{e} \mathrm{L}\mathrm{o}\mathrm{e}\mathrm{w}\mathrm{n}\mathrm{e}\mathrm{r} \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s} \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{n}-
\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s} \mathrm{i}\mathrm{n} \mathrm{b}\mathrm{a}\mathrm{r}\mathrm{y}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c} \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}. \mathrm{T}\mathrm{h}\mathrm{e} \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{a}\mathrm{l} \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s}
\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k} \mathrm{i}\mathrm{s} \mathrm{t}\mathrm{o} \mathrm{s}\mathrm{h}\mathrm{o}\mathrm{w} \mathrm{h}\mathrm{o}\mathrm{w} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{n}\mathrm{u}\mathrm{l}\mathrm{l} \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e} \mathrm{o}\mathrm{f} n-\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{L}\mathrm{o}\mathrm{e}\mathrm{w}\mathrm{n}\mathrm{e}\mathrm{r} \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s} \mathrm{c}\mathrm{a}\mathrm{n} \mathrm{b}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{d}
\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{a} \mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e} \mathrm{o}\mathrm{f} \mathrm{o}\mathrm{n}\mathrm{e}-\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{L}\mathrm{o}\mathrm{e}\mathrm{w}\mathrm{n}\mathrm{e}\mathrm{r} \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}. \mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}, \mathrm{a} \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}-
\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s} \mathrm{i}\mathrm{s} \mathrm{a}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{d}, \mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h} \mathrm{l}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{s} \mathrm{t}\mathrm{o} \mathrm{a} \mathrm{d}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c} \mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{b}\mathrm{u}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{n}. \mathrm{E}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}
\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{l}\mathrm{y}, \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s} \mathrm{b}\mathrm{u}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{n} \mathrm{i}\mathrm{s} \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{v}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{a}\mathrm{v}\mathrm{o}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}-\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{e}
n-\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{L}\mathrm{o}\mathrm{e}\mathrm{w}\mathrm{n}\mathrm{e}\mathrm{r} \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{s}\mathrm{i}\mathrm{z}\mathrm{e} N \times N . \mathrm{T}\mathrm{h}\mathrm{e} \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{d} \mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y} \mathrm{a}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{e}
\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{o}\mathrm{f} \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s}, \mathrm{l}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g} (\mathrm{i}) \mathrm{t}\mathrm{o} \mathrm{a} \mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{i}\mathrm{n} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m} \scrO (N3) \mathrm{t}\mathrm{o} \mathrm{b}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{w}
\scrO (N1.5) \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} n > 5 \mathrm{a}\mathrm{n}\mathrm{d} (\mathrm{i}\mathrm{i}) \mathrm{t}\mathrm{o} \mathrm{m}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{y} \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{g}\mathrm{e} \mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{s}\mathrm{t} \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e} \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}-
\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n} \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{r} \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}, \mathrm{t}\mathrm{h}\mathrm{u}\mathrm{s} \mathrm{t}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{e} \mathrm{o}\mathrm{f} \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{m}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{t}\mathrm{h}\mathrm{e}
\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e} \mathrm{t}\mathrm{o} \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y} \mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e} \mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a} \mathrm{s}\mathrm{e}\mathrm{t}\mathrm{s}. \mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s} \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s} \mathrm{l}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{s} \mathrm{t}\mathrm{o} \mathrm{a} \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}
\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r} \mathrm{t}\mathrm{o} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{K}\mathrm{o}\mathrm{l}\mathrm{m}\mathrm{o}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{v} \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}. \mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}, \mathrm{m}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}
\mathrm{u}\mathrm{s}\mathrm{e} \mathrm{o}\mathrm{f} \mathrm{b}\mathrm{a}\mathrm{r}\mathrm{y}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c} \mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}, \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y} \mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{c}\mathrm{a}\mathrm{n} \mathrm{b}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{d}
\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}-\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}. \mathrm{F}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}, \mathrm{w}\mathrm{e} \mathrm{s}\mathrm{u}\mathrm{g}\mathrm{g}\mathrm{e}\mathrm{s}\mathrm{t}
\mathrm{t}\mathrm{w}\mathrm{o} \mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{s} (\mathrm{o}\mathrm{n}\mathrm{e} \mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{o}\mathrm{n}\mathrm{e} \mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}) \mathrm{t}\mathrm{o} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}, \mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{l}\mathrm{y} \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m} \mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}, \mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}
(\mathrm{o}\mathrm{r} \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}) \mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s} \mathrm{e}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g} (\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}) \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}. \mathrm{N}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l} \mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{s}
\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{e}ff\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}.
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(\mathrm{a}\mathrm{c}\mathrm{a}@\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}.\mathrm{e}\mathrm{d}\mathrm{u}).
\ddagger \mathrm{C}\mathrm{S}\mathrm{C} \mathrm{G}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}, \mathrm{M}\mathrm{a}\mathrm{x} \mathrm{P}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{k} \mathrm{I}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{u}\mathrm{t}\mathrm{e} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{D}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x} \mathrm{T}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l} \mathrm{S}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{s}, \mathrm{M}\mathrm{a}\mathrm{g}\mathrm{d}\mathrm{e}\mathrm{b}\mathrm{u}\mathrm{r}\mathrm{g},

39106, \mathrm{G}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{y} (\mathrm{g}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{a}@\mathrm{m}\mathrm{p}\mathrm{i}-\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{d}\mathrm{e}\mathrm{b}\mathrm{u}\mathrm{r}\mathrm{g}.\mathrm{m}\mathrm{p}\mathrm{g}.\mathrm{d}\mathrm{e}).
\S \mathrm{D}\mathrm{T}\mathrm{I}\mathrm{S}, \mathrm{O}\mathrm{N}\mathrm{E}\mathrm{R}\mathrm{A}, \mathrm{U}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{t}\'\mathrm{e} \mathrm{d}\mathrm{e} \mathrm{T}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{e}, \mathrm{T}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{e}, 31055, \mathrm{F}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e} (\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{e}\mathrm{s}.\mathrm{p}\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{o}\mathrm{t}-\mathrm{v}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{a}\mathrm{l}@

\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}.\mathrm{f}\mathrm{r}).
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1. Introduction. First, the context, motivation, and problem statement are
presented. Since it is the principal mathematical tool of the developed method, a
brief historical review of Loewner matrix-driven methods is then given. Finally, the
contributions and organization of the paper are listed.

1.1. Motivation and Context: Nonintrusive Data-Driven Model Construc-
tion. Rational model approximation addresses the problem of constructing a reduced-
order model that accurately captures the behavior of a potentially large-scale model
depending on several variables. In the context of dynamical systems governed by
differential and algebraic equations, the multivariate nature comes mainly from the
parametric dependence of the underlying system or model. These parameters account
for physical characteristics such as mass, length, or material properties (in mechanical
systems), flow velocity, temperature (in fluid cases), chemical properties (in biological
systems), etc. In engineering applications, the parameters are embedded within the
model as tuning variables for the output of interest. The challenges and motivation for
dynamical multivariate/parametric reduced order model (pROM) construction stem
from three inevitable facts about modern computing and engineers' concerns:

(i) First, accurate modeling often leads to large-scale dynamical systems with
complex dynamics for which simulation times and data storage needs become
prohibitive, or at least impractical for engineers and practitioners.

(ii) Second, the explicit mathematical model describing the underlying phenom-
ena may not always be accessible, while input-output data may be measured
either from a computer-based (black-box) simulator or directly from a phys-
ical experiment; as a consequence, the internal variables of the dynamical
phenomena are usually too numerous to be stored or simply inaccessible.

(iii) Third, a potentially large number of parameters may be necessary for the
following steps of the process.

Complex and accurate parametric models are often needed to perform simulations,
forecasting, parametric uncertainty propagation, and optimization in a broad sense.
The goals are to better understand and analyze the physics, to tune coefficients, to
optimize the system, or to construct parameterized control laws. As these objectives
often require a multiquery model-based optimization process, the complexity dictates
the accuracy, scalability, and applicability of the approach, and it is relevant to seek
a pROM or multivariate surrogate with low complexity.

1.2. Literature Overview on Reduced-Order Modeling. In the last decade,
considerable effort has been dedicated to devising reliable and accurate model reduc-
tion (intrusive) and reduced-order modeling (ROM) (nonintrusive) methods, synthe-
sized in a multitude of approaches developed in recent years [3, 10, 26, 5, 11, 12].
For the class of parametric systems, the comprehensive review contribution in [13]
provides an exhaustive account of projection-based methods from the 2000s up to the
middle of the 2010s.
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Additionally, relatively new approaches use time-domain snapshot data to com-
pute reduced-order models, such as operator inference (OpInf) [40] and dynamic mode
decomposition (DMD) [45]. Extensions of such methods to parameterized dynamical
systems have recently been proposed, for OpInf in [49, 36] and for DMD in [2, 44].

For the class of frequency-domain methods, we concentrate on interpolation-based
methods. For other classes of projection-based methods, we refer the reader to the
survey [13]. As explained in this review paper, reduced-order models for parametric
systems are typically computed by employing projection, using either a local or a
global basis for matrix or transfer function interpolation. Relevant contributions
in past years include [1, 19, 50, 22]. Additionally, (quasi-)optimal approaches were
proposed in [9, 28, 37] that try to impose optimality in certain norms, e.g., the\scrH 2\otimes \scrL 2

norm.
Nonintrusive methods based on interpolation or approximate matching (using

least squares fitting) of transfer function measurements (of the underlying param-
eterized rational transfer function) have somewhat proliferated in recent decades,
with the following prominent contributions. First, extensions of the Loewner Frame-
work (LF) to multivariate rational approximation by interpolation [7, 29, 47] together
with the AAA (Adaptive Antoulas--Anderson) algorithm for multivariate functions
[43, 21]. Second, extensions of the vector-fitting framework to multivariate rational
approximation, including the generalized Sanathanan--Koerner iteration in [15, 51];
these works are mostly concerned with imposing stability and passivity guarantees
for macro model generation in the field of electronics.

1.3. Connection with the Kolmogorov Superposition Theorem. Problem 119
in the book of Polya and Szeg\"o [41] asks the following question: Are there actually
functions of three variables? Alternatively, is it possible to use compositions of func-
tions of two or fewer variables to express any function of three variables? This question
is related to Hilbert's 13th problem [27]: are there any genuinely continuous multivari-
ate functions? Hilbert, in fact, conjectured the existence of a three-variable continuous
function that cannot be expressed in terms of the composition and addition of two-
variable continuous functions. For a recent overview of this problem, see [38]. The
Kolmogorov superposition theorem (KST) answers this question negatively. It shows
that continuous functions of several variables can be expressed as the composition
and superposition of functions of one variable. Thus, there are no true functions of
three variables. The present contribution presents connections between the Loewner
framework and the KST restricted to rational functions. As a by-product, taming of
the curse of dimensionality (C-o-D), in terms of computational complexity, storage,
and, last but not least, numerical accuracy, is achieved.

1.4. Connection to Other Fields. Tensors are generalizations of vectors and
matrices in multiple dimensions. Applications include, among others, the fields of
signal processing (e.g., array processing), scientific computing (e.g., multivariate func-
tion discretization), and, more recently, quantum computing (e.g., simulation of quan-
tum many-body problems). We refer the reader to the survey [31] for additional
information and a detailed discussion. However, working explicitly with tensors, es-
pecially those of higher dimensions, is not a trivial task. The number of elements
in a tensor increases exponentially with the number of dimensions, as do the com-
putational/memory requirements. Such exponential dependence, together with the
challenges that arise from it, are connected to the \bfC -\bfo -\bfD .

Tensor decompositions are particularly important and relevant for several stren-
uous computational tasks since they can potentially alleviate the C-o-D that occurs
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LOEWNER FRAMEWORK FOR PARAMETRIC DYNAMICAL SYSTEMS 741

when working with high-dimensional tensors, as is explained in [46]. Such a decompo-
sition can accurately represent and substitute the tensor, i.e., one may use it instead
of explicitly using the original tensor itself. More details and an extensive literature
survey of low-rank tensor approximation techniques, including canonical polyadic de-
composition, Tucker decomposition, low multilinear rank approximation, and tensor
trains and networks, can be found in [23].

Tensorization and Loewner matrices were recently connected in the contribution
[17]. There, a collection of one-dimensional (1-D) (standard) Loewner matrices is
reshaped as a three-dimensional (3-D) tensor, to which the block term decomposition
(BTD) is applied; the procedure is named ``Loewnerization."" The application of
interest is blind signal separation.

Nonlinear eigenvalue problems (NEPs) can be viewed as a generalization of the
(ordinary) eigenvalue problem to equations that depend nonlinearly on the parame-
ters. Linearization techniques allow the reformulation of any polynomial eigenvalue
problem as a larger linear eigenvalue problem and then the application of established
(classical) algorithms to solve it. Other linearizations involve rational approximation,
e.g., [32, 25], which involve the usage of the rational Krylov or the AAA algorithms,
together with [16], which uses the Loewner and Hankel frameworks in the context of
contour integrals.

1.5. Problem Statement. A linear-in-state dynamical system parameterized in
terms of the parameters of \scrS = [2s, . . . ,ns]\top \subset \BbbC n - 1 is characterized in state-space
representation by the equations

(1.1) \frakE (\scrS ) \.\bfx (t;\scrS ) =\frakA (\scrS )\bfx (t;\scrS ) +\frakB (\scrS )\bfu (t), \bfy (t;\scrS ) = \frakC (\scrS )\bfx (t;\scrS ),

where \.\bfx (t;\scrS ) refers to the derivative of \bfx (t;\scrS )\in \BbbR M with respect to the time variable
t. Additionally, the nu control inputs are collected in the vector \bfu (t) \in \BbbR nu , while
the ny outputs are observed in the vector \bfy (t;\scrS ) \in \BbbR ny . Finally, the dimensions
of the system matrices appearing in the state-space realization (1.1) are as follows:
\frakE (\scrS ),\frakA (\scrS ) \in \BbbR M\times M , \frakB (\scrS ) \in \BbbR M\times nu , \frakC (\scrS ) \in \BbbR ny\times M . For simplicity of exposition,
we consider only the single-input and single-output (SISO) scenario in what follows,
i.e., nu = ny = 1. The extension to multi-input multioutput (MIMO) systems will be
the topic of future research, e.g., based on the formulation exposed in [47]. In what
follows, particular attention is paid to the exposition of a solution that \bft \bfa \bfm \bfe \bfs the
\bfC -\bfo -\bfD .

Remark 1.1 (taming the \bfC -\bfo -\bfD ). Throughout this work, the expression ``taming
the C-o-D"" will be used to emphasize the decoupling of variables, which drastically
reduces both the complexity of computation of barycentric weights in terms of flop,
and the memory storage requirements, while at the same time improving numerical
accuracy.

Transforming the differential equation in (1.1) using the unilateral Laplace trans-
form, the time variable t becomes 1s, and solving for the transformed state vari-
able, we have X(1s;\scrS ) = [1s\frakE (\scrS )  - \frakA (\scrS )] - 1\frakB (\scrS )U(1s). Similarly, transforming the
second equation in (1.1) we obtain Y(1s;\scrS ) = \frakC (\scrS )X(1s;\scrS ). These equations yield
Y(1s;\scrS ) = \frakC (\scrS )[1s\frakE (\scrS ) - \frakA (\scrS )] - 1\frakB (\scrS )U(1s). The transfer function of the parametric
linear time-invariant (pLTI) system in (1.1) is given by

(1.2) \frakH (1s, 2s, . . . ,ns) = \frakC (\scrS )
\bigl[ 
1s\frakE (\scrS ) - \frakA (\scrS )

\bigr]  - 1
\frakB (\scrS )\in \BbbC .

This is a multivariate rational function involving n variables ls\in \BbbC , l= 1, . . . , n.
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742 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

We denote the complexity of each variable ls with the value dl (the highest degree
in which the variable occurs in both polynomials describing the rational function
shown above) and say that \frakH (1s, 2s, . . . ,ns) in (1.2) is of complexity (d1, d2, . . . , dn).

As we are interested in the nonintrusive data-driven setup, let us now consider that
the function in (1.2) is not explicitly known. Instead, one has access to evaluations
at (support or interpolatory) points 1\lambda j1 ,

2\lambda j2 , . . . ,
n\lambda jn along 1s, 2s, . . .ns, leading to

measurements \bfw j1,j2,...,jn , for jl = 1, . . . , kl, where l= 1, . . . , n.
Under some assumptions detailed in what follows, we seek a reduced multivariate

rational model, pROM, \bfH , given as

(1.3) \bfH (1s, 2s, . . . ,ns) =\bfC \bfPhi (1s, 2s, . . . ,ns) - 1\bfG \in \BbbC ,

where the vectors \bfC \top ,\bfG \in \BbbC m, and square matrix \bfPhi \in \BbbC m\times m define a generalized
realization, detailed later. We denote this realization with the triple (\bfC ,\bfPhi ,\bfG ), being
the output, the inverse of the resolvent, and the input operators.

In what follows, we concentrate on continuous-time dynamical systems. There-
fore, the first variable 1s will be associated with the dynamic Laplace variable, while
2s, . . . ,ns represent nondynamic parametric variables (in most cases they will be
real valued, although a complex form is also possible). Note that a similar discrete
sampled-time model can be obtained using the z-transform (see, e.g., [48]). In addi-
tion, one might also notice that (1.2) may be any multivariate real- or complex-valued
function.

1.6. Historical Notes. The Loewner matrix was introduced by Karl L\"owner in
his seminal paper published nine decades ago [34] for the study of matrix convexity. It
has been further studied and used in multiple works dealing with data-driven rational
function approximation with applications in system theory in general. In [4], the
Loewner matrix constructed from data is used to compute the barycentric coefficients
to obtain the rational approximating function in the Lagrange basis. This is also
known as the one-sided Loewner framework. One major update was proposed in 2007
by [35], which introduced the two-sided Loewner framework, constructing a rational
model with minimal McMillan degree and also constructing a realization with minimal
order, directly from the data. [8] provides a comprehensive review of the case of single-
variable linear systems, gathering most of the results up to 2017. In [7], the one-sided
framework was extended to two variables/parameters, and its corresponding Lagrange
basis realization was derived. Later, in [29], the multiparameter Loewner framework
(mpLF) was presented together with (for up to three parameters) the barycentric
form, but without the description of a realization. Recently, tutorial contributions
for the Loewner framework, with its extensions and applications, were proposed in
[8, 30]. [20] provides a comprehensive overview including parametric and nonlinear
Loewner extensions, practical applications, and test cases from aerospace engineering
and fluid dynamics.

The AAA algorithm in [39] represents an iterative and adaptive version of the
method in [4] that makes use of the barycentric representation of rational interpolants.
For more details on barycentric forms and connections to Lagrange interpolation, we
refer the reader to [14]. In [43], the parametric AAA (p-AAA) algorithm was intro-
duced. This extends the original AAA formulation of [39] to multivariate problems
appearing in the modeling of parametric dynamical systems. The p-AAA can be
viewed as an adaptation of the mpLF, in that it also uses multidimensional Loewner
matrices and computes barycentric forms of the fitted rational functions. The p-AAA
algorithm chooses the interpolation points in a greedy manner and enriches the La-
grange bases until an approximation (with desired accuracy) is reached.
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In addition, multiple application-oriented research papers utilizing the Loewner
framework have been suggested, as well as multiple adaptations of the original version.
It is worth noting that the multivariate versions have been poorly studied, and when
they were studied, they were limited to three variables. In this paper, we address
these two points.

1.7. Contribution and Paper Organization. Our goal is to provide a complete
and scalable solution to the data-driven multivariate reduced-order model construc-
tion. The results provided in [7, 29] are extended. The main result consists of the
decoupling of variables, thus taming the C-o-D. The contribution is fivefold:

(i) We propose a multivariate generalized realization that allows the descrip-
tion with state-space form (with limited complexity) of any multivariate ra-
tional function (section 2 and Theorem 2.8).

(ii) The n-dimensional (n-D) multivariate Loewner matrix is introduced and is
shown to be the solution of a set of coupled Sylvester equations (section 4
and Theorem 4.13).

(iii) As the dimension N of the n-D Loewner matrix exponentially increases with
the amount of data (i.e., variables and associated degrees), we demonstrate
that the associated null space can be obtained using a collection of 1-D
Loewner matrices; this leads to the reduction of computational complex-
ity from \scrO (N3) to less than \scrO (N1.5) when n > 5, to a drastic reduction in
storage requirements (section 5 and Theorems 5.8, 5.10, and 5.13), and to
increased numerical accuracy.

(iv) A connection with Hilbert's 13th problem and the KST is established (first
with Theorem 5.9 and then in section 6).

(v) Two data-driven multivariate generalized model construction algorithms
(section 7 and Algorithms 7.1 and 7.2) are provided.

Among these contributions, items (i), (iii), and (iv) are the main theoretical re-
sults toward taming the C-o-D for data-driven multivariate function and realization
construction. More specifically, item (i) provides a new realization structure applica-
ble to any n-D rational function expressed in the Lagrange basis, where the complexity
(e.g., dimension of matrices) is controlled. Item (iii) shifts the problem of null space
computation of a large-scale n-D Loewner matrix to the null space computation of
a set of small-scale 1-D Loewner matrices, leading to the very same Lagrange coeffi-
cients required in the pROM construction, but with much lower computational effort.
Finally, item (iv) links this result to the KST by explicitly detailing the decoupling
of variables.

Remark 1.2 (connection to tensors). Stepping back from the dynamical systems
perspective, we also note that the proposed approach provides a candidate solution to
tensor approximation problems. Indeed, we approximate any problem characterized
by tensorized data sets by means of a rational function. This is done by taming
the \bfC -\bfo -\bfD as pointed out in (iii). Established tensor decompositions may provide a
bridge to the philosophy of our proposed method, which requires breaking down the
complex problem by eliminating one dimension at every step.

Remark 1.3 (connections to NEPs). The realization proposed addresses the prob-
lem of linearization in the context of NEPs. Specifically, our realization achieves
multilinearizations of the associated NEPs. Furthermore, in the bivariate case, if
we split the two variables, we achieve a linearization. In the case of more than two
variables, if we arrange them as the frequency variable 1s in the first group (or right
variable) and all the other variables (parameters) in the second group (left variables),
we achieve a linearization in 1s.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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744 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

The remainder of the paper is organized as follows. Section 2 provides the start-
ing point and initial seed by introducing a generalized multivariate rational functions
realization framework. From this form, a specific structure appropriate to the prob-
lem treated here is chosen. Since data are the main ingredient of the data-driven
framework used, section 3 introduces the data notations in a general n-variable case.
Then, in section 4, the data-based n-D Loewner matrices are defined and a connection
with cascaded Sylvester equations is made. The relationships with the multivariate
barycentric rational form (using a Lagrange basis), as well as the multivariate real-
ization, are also established. In section 5, the numerical complexity induced by the
n-D null space computation is reduced thanks to the decomposition into a recursive
set of 1-D Loewner matrix null space computations instead. This decomposition al-
lows a drastic reduction of the complexity, thus taming the C-o-D. Finally, section
6 details the connection with the KST. Based on all these contributions, two algo-
rithms are sketched in section 7 that indicate complete procedures for the construction
of a nonintrusive multivariate dynamical model realization from input-output data.
Numerical examples that illustrate the effectiveness of the proposed process are de-
scribed in section 8.1 Finally, section 9 concludes the paper and provides an outlook
on addressing open issues and future research problems.

2. Realizations of Multivariate Rational Functions. The starting point of this
study is the new generalized realization for multivariate rational functions. This leads
to the construction of a realization involving internal variable equations from an n-
variable transfer function in the form (1.2). This is expressed in the Lagrange basis.
After some preliminaries, the result is stated in Theorem 2.8. This stands as the first
major contribution of this paper.

2.1. Preliminaries. First, we derive the pseudocompanion Lagrange basis, then
we provide the multirow and multicolumn indices, the coefficient matrices proposi-
tions, and, finally, results on the characteristic polynomial.

2.1.1. Pseudocompanion Lagrange Matrix. Consider a rational function \frakH in
n variables, namely, js, each of degree dj (j = 1, . . . , n), as in (1.2). We will consider
the Lagrange basis of polynomials. The Lagrange pseudocompanion matrix considered
here is denoted j\BbbX \mathrm{L}\mathrm{a}\mathrm{g} and is defined as follows.

Definition 2.1. Let the Lagrange monomials in the variable js be denoted as
j\bfx i =

js - j\lambda i, where i = 1, . . . , nj and j\lambda i \in \BbbC . Associated with the jth variable, we
define the pseudocompanion form matrix in the Lagrange basis as

(2.1)

j\BbbX \mathrm{L}\mathrm{a}\mathrm{g} =

\biggl[ 
\bfX \mathrm{L}\mathrm{a}\mathrm{g}(js)

j\bfq \mathrm{L}\mathrm{a}\mathrm{g}

\biggr] 
=

\left[ 
      

j\bfx 1  - j\bfx 2 0 \cdot \cdot \cdot 0
j\bfx 1 0  - j\bfx 3 \cdot \cdot \cdot 0
...

...
. . .

...
...

j\bfx 1 0 \cdot \cdot \cdot 0  - j\bfx nj

jq1
jq2 \cdot \cdot \cdot jqnj - 1

jqnj

\right] 
      
\in \BbbC nj\times nj [js],

with values jqi, i = 1, . . . , nj, chosen such that j\BbbX \mathrm{L}\mathrm{a}\mathrm{g} is unimodular, i.e.,
det(j\BbbX \mathrm{L}\mathrm{a}\mathrm{g}) = 1.2

1\mathrm{A}\mathrm{n} \mathrm{e}\mathrm{x}\mathrm{h}\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} \mathrm{a}\mathrm{c}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t} \mathrm{o}\mathrm{f} \mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l} \mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{s} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{s}, \mathrm{t}\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r} \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} \mathrm{a}\mathrm{l}\mathrm{l} \mathrm{n}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{a}\mathrm{r}\mathrm{y} \mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a} \mathrm{a}\mathrm{n}\mathrm{d}
\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s} \mathrm{t}\mathrm{o} \mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{s}, \mathrm{c}\mathrm{a}\mathrm{n} \mathrm{b}\mathrm{e} \mathrm{f}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d} \mathrm{i}\mathrm{n} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}\mathrm{s} \mathrm{t}\mathrm{o} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{y} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{t} \mathrm{t}\mathrm{h}\mathrm{e}
\mathrm{e}\mathrm{n}\mathrm{d} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s} \mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}.

2\mathrm{O}\mathrm{n}\mathrm{e} \mathrm{m}\mathrm{a}\mathrm{y} \mathrm{c}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e} 1/jqi =\Pi k \not =i(si  - j\lambda k) \mathrm{f}\mathrm{o}\mathrm{r} k= 1, . . . , nj .
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Following the general interpolation framework, the js (j = 1, . . . , n) variables of
\frakH (1.2) are split into left and right variables, or equivalently into row and column
variables. For simplicity of exposition (and by permutation if necessary), we assume
that 1s, . . . , ks are the column (right) variables and k+1s, . . . ,ns are the row (left)
variables (0<k <n, k \in \BbbN ). Based on this data, we define two Kronecker products of
the associated pseudocompanion matrices.

Definition 2.2. Consider the column 1s, . . . , ks and row k+1s, . . . ,ns variables;
we define the Kronecker products of the pseudocompanion matrices (2.1) as

(2.2)
\bfGamma \mathrm{L}\mathrm{a}\mathrm{g} = 1\BbbX \mathrm{L}\mathrm{a}\mathrm{g} \otimes 2\BbbX \mathrm{L}\mathrm{a}\mathrm{g} \otimes \cdot \cdot \cdot \otimes k\BbbX \mathrm{L}\mathrm{a}\mathrm{g} \in \BbbC \kappa \times \kappa [1s, . . . , ks],

\bfDelta \mathrm{L}\mathrm{a}\mathrm{g} = k+1\BbbX \mathrm{L}\mathrm{a}\mathrm{g} \otimes k+2\BbbX \mathrm{L}\mathrm{a}\mathrm{g} \otimes \cdot \cdot \cdot \otimes n\BbbX \mathrm{L}\mathrm{a}\mathrm{g} \in \BbbC \ell \times \ell [k+1s, . . . ,ns],

where \kappa =
\prod k

j=1 nj and \ell =
\prod n

j=k+1 nj. These matrices are square and unimodular.
For brevity, we will now denote them as \bfGamma and \bfDelta .

2.1.2. Multirow/Multicolumn Indices and the Coefficient Matrices. We will
show how to set up the matrices containing the coefficients of the numerator and
denominator polynomials. The key to this goal is an appropriate definition of row/
column multi-indices.

Definition 2.3. Each column of \bfGamma and each column of \bfDelta defines a unique
multi-index Iq, Jr. We will refer to these indices as row and column multi-indices
(the latter because the \bfDelta matrix enters in transposed form), as follows:

Iq =
\bigl[ 
iqk+1, i

q
k+2, . . . , i

q
n

\bigr] 
, Jr = [jr1 , j

r
2 , . . . , j

r
k] , q= 1, . . . , \ell , r= 1, . . . , \kappa .

Each multi-index Iq (Jr) contains the indices of the Lagrange monomials involved in
the qth (rth) column of \bfDelta (\bfGamma ), respectively.

Remark 2.4. The ordering of these multi-indices is imposed by the ordering of the
Kronecker products in Definition 2.2. More details are available in the examples.

2.1.3. The Coefficient Matrices. We consider the rational function \bfH as

(2.3) \bfH (1s, 2s, . . . ,ns) =

\sum k1

j1=1

\sum k2

j2=1 \cdot \cdot \cdot 
\sum kn

jn=1
cj1,j2,...,jn\bfw j1,j2,...,jn

(1s - 1\lambda j1)(2s - 2\lambda j2)\cdot \cdot \cdot (ns - n\lambda jn )
\sum k1

j1=1

\sum k2

j2=1 \cdot \cdot \cdot 
\sum kn

jn=1
cj1,j2,...,jn

(1s - 1\lambda j1)(2s - 2\lambda j2)\cdot \cdot \cdot (ns - n\lambda jn )

,

where cj1,j2,...,jn \in \BbbC are the barycentric weights and \bfw j1,j2,...,jn \in \BbbC the data evalu-
ated at the combination of interpolation (support) points in \{ 1\lambda j1 ,

2\lambda j2 , . . . ,
n\lambda jn\} , or,

equivalently, following Definition 2.3, as

\bfH (1s, 2s, . . . ,ns) =

\sum \ell 
q=1

\sum \kappa 
r=1

\beta Iq,Jr\prod 
a\in Iq

\prod 
b\in Jr

(as - a\lambda ja )(
bs - b\lambda jb

)

\sum \ell 
q=1

\sum \kappa 
r=1

\alpha Iq,Jr\prod 
a\in Iq

\prod 
b\in Jr

(as - a\lambda ja )(
bs - b\lambda jb

)

.

We now define matrices of size \ell \times \kappa :

(2.4) \BbbA Lag =

\left[        
\alpha I1,J1

\alpha I1,J2
\cdot \cdot \cdot aI1,J\kappa 

\alpha I2,J1
\alpha I2,J2

\cdot \cdot \cdot \alpha I2,J\kappa 

...
...

. . .
...

\alpha I\ell ,J1
\alpha I\ell ,J2

\cdot \cdot \cdot \alpha I\ell ,J\kappa 

\right]        , \BbbB Lag =

\left[        
\beta I1,J1

\beta I1,J2
\cdot \cdot \cdot \beta I1,J\kappa 

\beta I2,J1 \beta I2,J2 \cdot \cdot \cdot \beta I2,J\kappa 

...
...

. . .
...

\beta I\ell ,J1
\beta I\ell ,J2

\cdot \cdot \cdot \beta I\ell ,J\kappa 

\right]        .
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746 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

Notice that \BbbA \mathrm{L}\mathrm{a}\mathrm{g} contains the appropriately arranged barycentric weights of the de-
nominator of \bfH (i.e., the entries of a vector in the null space of the associated Loewner
matrix), while \BbbB \mathrm{L}\mathrm{a}\mathrm{g}, contains the barycentric weights of the numerator, i.e., the prod-
uct of the denominator barycentric weights with the corresponding values of \bfH .

2.1.4. Characteristic Polynomial in the Barycentric Representation. We con-
sider the single-variable polynomial \bfp (s) of degree (at most) n in the variable s. For
a barycentric or Lagrange representation, the following holds (by expanding the de-
terminant of \bfM with respect to the last row).

Proposition 2.5. Given the polynomial \bfp (s) of degree less than or equal to
n, expressed in a Lagrange basis as \bfp (s) = \pi 

\bigl( 
\alpha 1

\bfx 1
+ \cdot \cdot \cdot + \alpha n+1

\bfx n+1

\bigr) 
, where \pi =

\prod n+1
i=1 \bfx i,

it follows that det(\bfM ) =
\sum n+1

i=1 \alpha i

\prod 
j \not =i \bfx j = \bfp (s), where \bfM is the pseudocompanion

form matrix as in Definition 2.1, where j\bfx i is replaced by \bfx j and jq1 by \alpha j.

Next, following Proposition 2.5, we consider two-variable polynomials \bfp (s, t) of
degree (at most) n, m in the variables s, t, respectively. Let \bfx i(s) = s - si, si \in \BbbC ,
i = 1, . . . , n + 1, and \bfy j(t) = t  - tj , tj \in \BbbC , j = 1, . . . ,m + 1, be the monomials
constituting a Lagrange basis for two-variable polynomials of degree less than or
equal to n, m, respectively. In other words,

\bfp (s, t) = \pi 

\biggl[ 
\alpha 1,1

\bfx 1\bfy 1
+ \cdot \cdot \cdot + \alpha 1,m+1

\bfx 1\bfy m+1
+ \cdot \cdot \cdot + \alpha n+1,1

\bfx n+1\bfy 1
+ \cdot \cdot \cdot + \alpha n+1,m+1

\bfx n+1\bfy m+1

\biggr] 
,

which can be rewritten by highlighting the matrix form of (2.4) as

\bfp (s, t) = \pi 

\biggl[ 
1

\bfx 1
,
1

\bfx 2
, . . . ,

1

\bfx n+1

\biggr] 
\left[ 
    

\alpha 1,1 \alpha 1,2 \cdot \cdot \cdot \alpha 1,m+1

\alpha 2,1 \alpha 2,2 \cdot \cdot \cdot \alpha 2,m+1

...
...

. . .
...

\alpha n+1,1 \alpha n+1,2 \cdot \cdot \cdot \alpha n+1,m+1

\right] 
    

\left[ 
    

1
\bfy 1
1
\bfy 1

...
1

\bfy m+1

\right] 
    ,

where \pi =
\prod n+1

i=1 \bfx i

\prod m+1
j=1 \bfy j . Consider next the pseudocompanion form matrices,

(2.5)

\bfS =

\left[ 
      

\bfx 1  - \bfx 2 0 \cdot \cdot \cdot 0
\bfx 1 0  - \bfx 3 \cdot \cdot \cdot 0
...

...
. . .

...
...

\bfx 1 0 \cdot \cdot \cdot 0  - \bfx n+1

\epsilon 1 \epsilon 2 \cdot \cdot \cdot \epsilon n \epsilon n+1

\right] 
      

\underbrace{}  \underbrace{}  
\in \BbbC (n+1)\times (n+1)[s]

, \bfT =

\left[ 
      

\bfy 1  - \bfy 2 0 \cdot \cdot \cdot 0
\bfy 1 0  - \bfy 3 \cdot \cdot \cdot 0
...

...
. . .

...
...

\bfy 1 0 \cdot \cdot \cdot 0  - \bfy m+1

\zeta 1 \zeta 2 \cdot \cdot \cdot \zeta m \zeta m+1

\right] 
      

\underbrace{}  \underbrace{}  
\in \BbbC (m+1)\times (m+1)[t]

,

where the constants \epsilon i and \zeta j are chosen such that det(\bfS ) = 1 and det(\bfT ) = 1.3 The

coefficients \alpha i,j are arranged in the form of a matrix \BbbA \mathrm{L}\mathrm{a}\mathrm{g} \in \BbbC (n+1)\times (m+1) as in (2.4),

\BbbA \mathrm{L}\mathrm{a}\mathrm{g} =

\left[ 
   

\alpha 1,1 \alpha 1,2 \cdot \cdot \cdot \alpha 1,m+1

\alpha 2,1 \alpha 2,2 \cdot \cdot \cdot \alpha 2,m+1

...
...

. . .
...

\alpha n+1,1 \alpha n+1,2 \cdot \cdot \cdot \alpha n+1,m+1

\right] 
   ,

3\mathrm{O}\mathrm{n}\mathrm{e} \mathrm{m}\mathrm{a}\mathrm{y} \mathrm{c}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e} 1/\epsilon i =\Pi j \not =i(si  - sj) \mathrm{a}\mathrm{n}\mathrm{d} 1/\zeta i =\Pi j \not =i(ti  - tj) \mathrm{f}\mathrm{o}\mathrm{r} i, j = 1, . . . , n,m.
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LOEWNER FRAMEWORK FOR PARAMETRIC DYNAMICAL SYSTEMS 747

or in a vectorized version (taken rowwise) vec (\BbbA \mathrm{L}\mathrm{a}\mathrm{g}) \in \BbbC 1\times \kappa such that vec (\BbbA \mathrm{L}\mathrm{a}\mathrm{g}) =
[\alpha 1,1, \alpha 1,2, . . . , \alpha 1,m+1 | \cdot \cdot \cdot | \alpha n+1,1, . . . , \alpha n+1,m+1], where \kappa = (n+1)(m+1). Consider
also the Kronecker product \bfS \otimes \bfT , which turns out to be a square polynomial matrix
of size \kappa . We form two matrices

(2.6) \bfM 1 =

\Biggl[ 
(\bfS \otimes \bfT )(1:\kappa  - 1, :)

vec (\BbbA \mathrm{L}\mathrm{a}\mathrm{g})

\Biggr] 

\underbrace{}  \underbrace{}  
\in \BbbC \kappa \times \kappa [s,t]

and \bfM 2 =

\biggl[ 
\bfS (1:n - 1, :) \bfzero n - 1,m - 1

\BbbA \mathrm{L}\mathrm{a}\mathrm{g} \bfT (1:m - 1, :)\top 
\biggr] 

\underbrace{}  \underbrace{}  
\in \BbbC (n+m - 1)\times (n+m - 1)[s,t]

.

Proposition 2.6. The determinants of \bfM 1 and \bfM 2 are both equal to \bfp (s, t).

Proof. The first expression follows by expanding the determinant of \bfM 1 with
respect to the last row. For the validity of the second expression, see Theorem 2.8.

Remark 2.7 (C-o-D). This result shows that by splitting the variables into left
and right variables, the \bfC -\bfo -\bfD is alleviated, as in the former case the dimension is
(n+ 1)(m+ 1), while in the latter the dimension is n+m - 1.

2.2. The Multivariate Realization in the Lagrange Basis.

2.2.1. Main Result. The result provided in Theorem 2.8 yields a systematic way
to construct a realization as in (1.3) from a transfer function \bfH given in a barycentric
/ Lagrange form (2.3).

Theorem 2.8. Given quantities in Definition 2.1 and Definition 2.2, a 2\ell +\kappa  - 1 =
mth-order realization (\bfC ,\bfPhi ,\bfG ) of the multivariate function \frakH in (1.2), in barycentric
form (2.3), satisfying \bfH (1s, . . . ,ns) =\bfC \bfPhi (1s, . . . ,ns) - 1\bfG , is given by

(2.7)

Φ(1s, . . . , ns) =

⎡
⎣

Γ(1 : κ− 1, :) 0κ−1,�−1 0κ−1,�

ALag Δ(1 : �− 1, :)� 0�,�

BLag 0�,�−1 Δ�

⎤
⎦ ∈ Cm×m[1s, . . . , ns],

G =

⎡
⎣

0κ−1,1

Δ(�, :)�
0�,1

⎤
⎦ ∈ Cm×1 and C =

[
01,κ 01,�−1 −e��

]
∈ C1×m,

where \bfe r denotes the rth unit vector (i.e., all entries are zero except the last one,
equal to 1) and where \BbbA \mathrm{L}\mathrm{a}\mathrm{g},\BbbB \mathrm{L}\mathrm{a}\mathrm{g} \in \BbbC \ell \times \kappa are appropriately chosen according to the
pseudocompanion basis used.

Proof. See subsection 2.2.2.

Remark 2.9 (matrix realization). From Theorem 2.8 and following (1.1)'s nota-
tions, it follows that \bfPhi (1s, 2s, . . . ,ns) = 1s\frakE (\scrS ) - \frakA (\scrS ), \bfG =\frakB (\scrS ), and \bfC = \frakC (\scrS ).

Corollary 2.10. The realization defined by the tuple (\bfC ,\bfPhi ,\bfG ) has dimension
m= 2\ell + \kappa  - 1, and it is both R-controllable and R-observable, i.e.,

(2.8)
\bigl[ 
\bfPhi (1s, . . . ,ns) \bfG 

\bigr] 
and

\biggl[ 
\bfC 

\bfPhi (1s, . . . ,ns)

\biggr] 

have full rank m for all js\in \BbbC . Furthermore, \bfPhi is a polynomial matrix in the variables
js, while \bfC and \bfG are constant.

Proof. The result follows by noticing that the expressions in question have full
rank for all js\in \BbbC because of the unimodularity of \bfDelta and \bfGamma .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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748 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

2.2.2. Proof of Theorem 2.8.

The Numerator of Realization (2.7). First, partition \bfPhi =

\biggl[ 
\bfPhi 11 \bfzero 
\bfPhi 21 \bfPhi 22

\biggr] 
, where the

sizes of the four entries are (\kappa + \ell  - 1)\times (\kappa + \ell  - 1), (\kappa + \ell  - 1)\times \ell , \ell \times (\kappa + \ell  - 1),

\ell \times \ell , \bfG =

\biggl[ 
\bfG 1

\bfzero \ell ,1

\biggr] 
, and \bfC = [\bfzero 1,\kappa +\ell  - 1 - \bfe \top \ell \underbrace{}  \underbrace{}  

\bfC 2

]. It follows that

(2.9) \bfH = \bfC \bfPhi  - 1\bfG =
\bfn 

\bfd 
=\bfC 2\bfPhi 

 - 1
22 \bfPhi 21\bfPhi 

 - 1
11 \bfG 1.

The last expression can be expressed explicitly as

The expressions for \bfr \top \ell and \bfc \kappa are a consequence of Proposition 2.11. It follows that
\bfn = \bfr \top \ell \BbbB \mathrm{L}\mathrm{a}\mathrm{g} \bfc \kappa . Interchanging \BbbA \mathrm{L}\mathrm{a}\mathrm{g} and \BbbB \mathrm{L}\mathrm{a}\mathrm{g} in (2.7) amounts to interchanging \bfn 
and \bfd in \bfH (2.9); the expression for the denominator is \bfd = \bfr \top \ell \BbbA \mathrm{L}\mathrm{a}\mathrm{g} \bfc \kappa .

Proposition 2.11. (a) The last row of \bfDelta  - \top is

\bfr \top \ell =

\biggl[ 
1

k+1\bfx 1
, . . . ,

1
k+1\bfx nk+1+1

\biggr] 
\otimes \cdot \cdot \cdot \otimes 

\biggl[ 
1

n\bfx 1
, . . . ,

1
n\bfx n+1

\biggr] 
.

Therefore, \bfr \top \ell \cdot \BbbB \mathrm{L}\mathrm{a}\mathrm{g} is a matrix of size 1\times \kappa . (b) The last column of \bfGamma  - 1 is

\bfc \kappa =

\biggl[ 
1

1\bfx 1
, . . . ,

1
1\bfx n1+1

\biggr] \top 
\otimes \cdot \cdot \cdot \otimes 

\biggl[ 
1

k\bfx 1
, . . . ,

1
k\bfx nk+1

\biggr] \top 
.

Remark 2.12. The possibility of splitting the variables into left and right variables
allows for the choosing of a splitting that minimizes m. For instance, if we have four
variables with degrees (2,2,1,1), splitting the variables into (2,1)--(2,1) yields m= 17,
while the splitting (2)--(2,1,1) (i.e., one column and three rows) yields m= 26.

2.3. Comments. In Theorem 2.8, both matrices \BbbA \mathrm{L}\mathrm{a}\mathrm{g},\BbbB \mathrm{L}\mathrm{a}\mathrm{g} \in \BbbC \ell \times \kappa are directly
related to the pseudocompanion basis chosen in Definition 2.1 and to the columns-
rows variables split. Without entering into technical considerations (which is out of
scope for this paper), one may make the following observations. (i) Different pseu-
docompanion forms (2.1) can be considered, leading to different structures associated
with different polynomial bases, such as the Lagrange or the monomial basis. Here,
the Lagrange basis will be considered exclusively. (ii) Different permutations and
rearrangements of js in Definition 2.2 may be considered. This results in a different
realization order with m = 2\ell + \kappa  - 1. Consequently, an adequate choice leads to a
reduced order realization, taming the realization dimensionality issue.

We are now ready to introduce the main ingredient, namely, the data set. The
data can be obtained from any (dynamical) black box model, simulator, or experiment.

3. Definition and Description of the Data. Following the Loewner philosophy
presented in a series of papers [35, 7, 29, 20], let us define Pc, the column (or right)
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Table 1 1-D and 2-D tableau construction.

(a) 1-D tableau construction: tab1.

1s
1λ1,...,k1

W⊗
k1

1μ1,...,q1 V⊗
q1

(b) 2-D tableau construction: tab2.

1s
2s 2λ1,...,k2

2μ1,...,q2

1λ1,...,k1
W⊗

k1,k2
φcr

1μ1,...,q1 φrc V⊗
q1,q2

data, and Pr, the row (or left) data. These data will serve the construction of the
n-D Loewner matrices in section 4. In what follows, the 1-D and 2-D data cases are
first recalled, in preparation for the exposition of the general n-D case.

3.1. The 1-D Case. When considering single-valued functions \frakH (1s), i.e., n = 1
in (1.2), we define the following column and row data:

(3.1) P (1)
c :=

\bigl\{ \bigl( 
1\lambda j1 ;\bfw j1

\bigr) 
, j1 = 1, . . . , k1

\bigr\} 
, P (1)

r :=
\bigl\{ \bigl( 

1\mu i1 ;\bfv i1

\bigr) 
, i1 = 1, . . . , q1

\bigr\} 
,

where 1\lambda j1 ,
1\mu i1 \in \BbbC are disjoint interpolation points (or support points) for which

the evaluation of \frakH , respectively, leads to \bfw j1 \in \BbbC and \bfv i1 \in \BbbC . To support our
exposition, let the data (3.1) be represented in the tableau given in Table 1(a), where
the measurement vectors \bfW \otimes 

k1
\in \BbbC k1 and \bfV \otimes 

q1 \in \BbbC q1 indicate the evaluation of \frakH 
through the single variable 1s, evaluated at 1\lambda j1 and 1\mu i1 , respectively. Table 1(a)
(also called \bft \bfa \bfb 1) is called a measurement matrix. From \bft \bfa \bfb 1, the (1,1) block of
dimension k1\times 1 contains the column measurements, and the (1,2) block of dimension
q1 \times 1 contains the row measurements.

3.2. The 2-D Case. Let us define the column and row data

(3.2)

\Biggl\{ 
P

(2)
c :=

\bigl\{ 
(1\lambda j1 ,

2\lambda j2 ;\bfw j1,j2), jl = 1, . . . , kl, l= 1,2
\bigr\} 
,

P
(2)
r :=

\bigl\{ 
(1\mu i1 ,

2\mu i2 ;\bfv i1,i2), il = 1, . . . , ql, l= 1,2
\bigr\} 
,

where \{ 1\lambda j1 ,
1\mu i1\} \in \BbbC 2 and \{ 2\lambda j2 ,

2\mu i2\} \in \BbbC 2 are sets of disjoint interpolation points,
for which evaluating \frakH (1s, 2s), respectively, leads to \bfw j1,j2 ,\bfv i1,i2 \in \BbbC . Similar to the
1-D case, data (3.2) may be represented in Table 1(b), where \bfW \otimes 

k1,k2
\in \BbbC k1\times k2 and

\bfV \otimes 
q1,q2 \in \BbbC 

q1\times q2 are the measurement matrices related to the evaluation of \frakH through
the two variables 1s and 2s evaluated at \{ 1\lambda j1 ,

2\lambda j2\} and \{ 1\mu i1 ,
2\mu i2\} .

Compared to the single-variable case, the tableau embeds two additional sets of
measurements: \phi rc \in \BbbC q1\times k2 and \phi cr \in \BbbC k1\times q2 . The former results from the cross-
interpolation points evaluation of \frakH (1s, 2s) along \{ 1\mu i1 ,

2\lambda j2\} and the latter from
the evaluation along \{ 1\lambda j1 ,

2\mu i2\} . It follows that Table 1(b) (denoted \bft \bfa \bfb 2) is a
measurement matrix.

Remark 3.1 (cross-measurements). In [29, 47], these cross-measurements are used
in the extended Loewner matrix construction for improved accuracy.

3.3. The \bfitn -D Case. Now that the single- and two-variable cases have been
reviewed and notations introduced, let us present the n-variable data case:

(3.3) P
(n)
c :=

\bigl\{ 
(1\lambda j1 , . . . ,

n\lambda jn ;\bfw j1,j2,...,jn), jl = 1, . . . , kl, l= 1, . . . , n
\bigr\} 
,

P
(n)
r :=

\bigl\{ 
(1\mu i1 , . . . ,

n\mu in ;\bfv i1,i2,...,in), il, . . . , ql, l= 1, . . . , n
\bigr\} 
.

Similarly, one may derive the n-variable measurement matrix called \bft \bfa \bfb n, illus-
trated in the table sequence given in Table 2. Similar to the expositions made for
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750 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

Table 2 n-D table construction: tabn (some configurations).

(a) 3s = 3λ1,
4s = 4λ1, . . . ,

ns = nλ1.

1s
2s 2λk2

2μq2

1λk1
W⊗

k1,k2,1,...,1
φcrc···c

1μq1 φrcc···c φrrc···c

(b) 3s = 3μ1,
4s = 4μ1, . . . ,

ns = nμ1.

1s
2s 2λk2

2μq2

1λk1
φccr···r φcrr···r

1μq1 φrcr···r V⊗
q1,q2,1,...,1

(c) 3s = 3λk3 ,
4s = 4λk4 , . . . ,

ns = nλkn .

1s

2s 2λk2
2μq2

1λk1
W⊗

k1,k2,...,kn
φcrc···c

1μq1 φrcc···c φrrc···c

(d) 3s = 3μq3 ,
4s = 4μq4 , . . . ,

ns = nμq3 .

1s

2s 2λk2
2μq2

1λk1
φccr···r φcrr···r

1μq1 φrcr···r V⊗
q1,q2,...,qn

the single- and two-variable cases, each subtable considers frozen configurations of
3s, 4s, . . . ,ns along with the combinations of the support points 3\lambda j3 ,

4\lambda j4 , . . . ,
n\lambda jn

and 3\mu i3 ,
4\mu i4 , . . . ,

n\mu in , thus forming an n-dimensional tensor. In particular, con-
sidering the first subtableau, the evaluation is for 3s, 4s, . . . ,ns = 3\lambda 1,

4\lambda 1, . . . ,
n\lambda 1.

The \bfW \otimes 
k1,k2,j3,...,jn

\in \BbbC k1\times k2 and \bfV \otimes 
q1,q2,i3,...,in

\in \BbbC q1\times q2 entries concatenated form the

data tensors \bfW \otimes \in \BbbC k1\times k2\times \cdot \cdot \cdot \times kn and \bfV \otimes \in \BbbC q1\times q2\times \cdot \cdot \cdot \times qn ; \bft \bfa \bfb n is an n-dimensional
tensor.

4. Multivariate Loewner Matrices and Null Spaces. Based on section 3 (specif-
ically on (3.3) and \bft \bfa \bfb n), we are now ready to present our main tool: the multivariate
Loewner matrix. Following the exposition in the previous section, we first recall
the 1-D and 2-D Loewner matrices before presenting the n-D counterpart. For each
dimension, the Loewner matrix is illustrated in close connection to the Sylvester equa-
tion that it satisfies. Then, the relationship between the Loewner null space and the
barycentric rational function is stated, and the connection with generalized realization
is established, linking the data of section 3 with the realization of section 2.

4.1. The 1-D Case. The single-variable case is briefly mentioned here (more
details and connections with dynamical systems theory may be found in [8]).

4.1.1. Loewner Matrix and the Sylvester Equation.
Definition 4.1. Given the data described in (3.1), the 1-D Loewner matrix

\BbbL 1 \in \BbbC q1\times k1 has (i1, j1)th entries equal to

(\BbbL 1)i1,j1 =
\bfv i1  - \bfw j1
1\mu i1  - 1\lambda j1

, i1 = 1, . . . , q1, j1 = 1, . . . , k1.

Theorem 4.2. Considering the data in (3.1), we define the following matrices:

\bfLambda 1 =diag
\bigl( 
1\lambda 1, . . . ,

1\lambda k1

\bigr) 
, \bfM 1 =diag

\bigl( 
1\mu 1, . . . ,

1\mu q1

\bigr) 
,

\BbbW 1 = [\bfw 1,\bfw 2, . . . ,\bfw k1 ] , \BbbV 1 = [\bfv 1,\bfv 2, . . . ,\bfv q1 ]
\top , and \bfL 1 = \bfone q1 , \bfR 1 = \bfone \top 

k1
.

The Loewner matrix as defined in Definition 4.1 is the solution of the Sylvester equa-
tion, \bfM 1\BbbL 1  - \BbbL 1\bfLambda 1 =\BbbV 1\bfR 1  - \bfL 1\BbbW 1.

4.1.2. Null Space, Lagrange Basis Form, and Generalized Realization. Com-
puting \BbbL 1\bfc 1 = 0, the null space of the Loewner matrix \BbbL 1, the following holds (with an
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appropriate number of interpolation points): \bfc 1 =
\bigl[ 
c1 \cdot \cdot \cdot ck1

\bigr] \top \in \BbbC k1 contains the
so-called barycentric weights of the single-variable rational function \bfH (1s) of degree
(d1) = (k1  - 1) given by

\bfH (1s) =

\sum k1

j1=1
cj1\bfw j1

1s - 1\lambda j1\sum k1

j1=1
cj1

1s - 1\lambda j1

=

\sum k1

j1=1
\beta j1

1s - 1\lambda j1\sum k1

j1=1
cj1

1s - 1\lambda j1

,

where \bfc \top 1 \odot \BbbW 1 = [ \beta 1 \beta 2 \cdot \cdot \cdot \beta k1 ]\in \BbbC k1 interpolates \frakH (1s) at points 1\lambda j1 .

Result 4.3 (1-D realization). Given Definition 2.2 and following Theorem 2.8, a
generalized realization of \bfH (1s) is obtained with the following settings: \BbbA \mathrm{L}\mathrm{a}\mathrm{g} =  - \bfc \top 1 ,
\BbbB \mathrm{L}\mathrm{a}\mathrm{g} = \emptyset , \bfGamma = 1\BbbX \mathrm{L}\mathrm{a}\mathrm{g}, and \bfDelta = \emptyset .

Note that this representation recovers the result already discussed, e.g., in [8].

Example 4.4. Let us consider \frakH (1s) = \frakH (s) = (s2 + 4)/(s + 1), a single-valued
rational function of complexity 2 (i.e., dimension 2 along s). By evaluating \frakH in
1\lambda j1 = [1,3,5] and 1\mu i1 = [2,4,6,8], one obtains \bfw j1 = [5/2,13/4,29/6] and \bfv i1 =
[8/3,4,40/7,68/9]. Then, we construct the Loewner matrix, its null space (\bfr \bfa \bfn \bfk \BbbL 1 =
2), and a rational function interpolating the data as

\BbbL 1 =

\left[ 
    

1
6

7
12

13
18

1
2

3
4

5
6

9
14

23
28

37
42

13
18

31
36

49
54

\right] 
    , \bfc 1 =

\left[ 
  

1
3

 - 4
3

1

\right] 
  , \bfH (s) =

5
6 (s - 1)  - 13

3 (s - 3) +
29

6 (s - 5)

1
3 (s - 1)  - 4

3 (s - 3) +
1

s - 5

.

Then, \bfH (s) recovers the original function \frakH (s). A realization in the Lagrange basis
can be obtained as \bfH (s) =\bfC \bfPhi (s) - 1\bfG , where

Φ(s) =

⎡
⎢⎣

s− 1 3− s 0

s− 1 0 5− s

− 1
3

4
3

−1

⎤
⎥⎦ and

{
C =

[
5
6 − 13

3
29
6

]

G� =
[
0 0 −1

]
.

4.2. The 2-D Case. This section recalls the results originally given in [7] for the
case of two variables.

4.2.1. The Loewner Matrix and Sylvester Equations. Similarly to the 1-D
case, let us now define the Loewner matrix in the 2-D case.

Definition 4.5. Given the data described in (3.2), the 2-D Loewner matrix
\BbbL 2 \in \BbbC q1q2\times k1k2 , has matrix entries given by

\ell i1,i2j1,j2
=

\bfv i1,i2  - \bfw j1,j2

(1\mu i1  - 1\lambda j1) (
2\mu i2  - 2\lambda j2)

.

Definition 4.6. Considering the data given in (3.2), we define the following
matrices based on Kronecker products:

(4.1)

\bfLambda 1 =diag
\bigl( 
1\lambda 1, . . . ,

1\lambda k1

\bigr) 
\otimes \bfI k2

, \bfM 1 =diag
\bigl( 
1\mu 1, . . . ,

1\mu q1

\bigr) 
\otimes \bfI q2 ,

\bfLambda 2 = \bfI k1 \otimes diag
\bigl( 
2\lambda 1, . . . ,

2\lambda k2

\bigr) 
, \bfM 2 = \bfI q1 \otimes diag

\bigl( 
2\mu 1, . . . ,

2\mu q2

\bigr) 
,

\BbbW 2 = [\bfw 1,1,\bfw 1,2, . . . ,\bfw 1,k2
,\bfw 2,1, . . . ,\bfw k1,k2

] , \bfR 2 = \bfone \top 
k1k2

,

\BbbV 2 = [\bfv 1,1,\bfv 1,2, . . . ,\bfv 1,q2 ,\bfv 2,1, . . . ,\bfv q1,q2 ]
\top , and \bfL 2 = \bfone q1q2 .
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752 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

Theorem 4.7. The 2-D Loewner matrix as defined in Definition 4.5 is the solu-
tion of the following set of coupled Sylvester equations:

(4.2) \bfM 2\BbbX  - \BbbX \bfLambda 2 =\BbbV 2\bfR 2  - \bfL 2\BbbW 2 and \bfM 1\BbbL 2  - \BbbL 2\bfLambda 1 =\BbbX .

Corollary 4.8. By eliminating the variable \BbbX , it follows that the 2-D Loewner
matrix above satisfies the following generalized Sylvester equation:

\bfM 2\bfM 1\BbbL 2  - \bfM 2\BbbL 2\bfLambda 1  - \bfM 1\BbbL 2\bfLambda 2 +\BbbL 2\bfLambda 1\bfLambda 2 =\BbbV 2\bfR 2  - \bfL 2\BbbW 2.

4.2.2. Null Space, Lagrange Basis Form, and Generalized Realization. Com-
puting \BbbL 2\bfc 2 = 0, the null space of the bivariate Loewner matrix, we
obtain (using the appropriate number of interpolation points)

\bfc \top 2 = [
c1,1 \cdot \cdot \cdot c1,k2\underbrace{}  \underbrace{}  

\alpha \top 
1

c2,1 \cdot \cdot \cdot c2,k2\underbrace{}  \underbrace{}  
\alpha \top 

2

\cdot \cdot \cdot ck1,1 \cdot \cdot \cdot ck1,k2\underbrace{}  \underbrace{}  
\alpha \top 

k1

] \in \BbbC k1k2 and \bfc \top 2 \odot 

\BbbW 2 = [ \beta \top 
1 \beta \top 

2 \cdot \cdot \cdot \beta \top 
k1

] \in \BbbC k1k2 . These are the barycentric weights of the bi-
variate rational function \bfH (1s, 2s) of degree (d1, d2) = (k1  - 1, k2  - 1),

\bfH (1s, 2s) =

\sum k1

j1=1

\sum k2

j2=1
\beta j1,j2

(1s - 1\lambda j1)(2s - 2\lambda j2)\sum k1

j1=1

\sum k2

j2=1
cj1,j2

(1s - 1\lambda j1)(2s - 2\lambda j2)

,

which interpolates \frakH (1s, 2s) at the support points \{ 1\lambda j1 ,
2\lambda j2\} .

Result 4.9 (2-D realization). Given Definition 2.2 and following Theorem 2.8, a
generalized realization of \bfg (1s, 2s) is obtained by means of \BbbA \mathrm{L}\mathrm{a}\mathrm{g} = [ \alpha 1 \alpha 2 \cdot \cdot \cdot \alpha k1 ],
\BbbB \mathrm{L}\mathrm{a}\mathrm{g} = [ \beta 1 \beta 2 \cdot \cdot \cdot \beta k1 ], and \bfGamma = 1\BbbX \mathrm{L}\mathrm{a}\mathrm{g}, \bfDelta = 2\BbbX \mathrm{L}\mathrm{a}\mathrm{g}.

Example 4.10. Let us consider \frakH (1s, 2s) =\frakH (s, t) = (s2t)/(s - t+1) of complexity
(2,1). By evaluating \frakH in 1\lambda j1 = [1,3,5], 1\mu i1 = [0,2,4], 2\lambda j2 = [ - 1, - 3], and 2\mu i2 =
[ - 2, - 4], one obtains the response tableau \bft \bfa \bfb 2,

\biggl[ 
\bfW \otimes 

k1,k2
\phi cr

\phi rc \bfV \otimes 
q1,q2

\biggr] 
=

\left[ 
        

 - 1
3

 - 3
5

 - 1
2

 - 2
3

 - 9
5

 - 27
7

 - 3  - 9
2

 - 25
7

 - 25
3

 - 25
4

 - 10

0 0 0 0

 - 1  - 2  - 8
5

 - 16
7

 - 8
3

 - 6  - 32
7

 - 64
9

\right] 
        
.

The 2-D Loewner matrix is computed with its null space (\bfr \bfa \bfn \bfk (\BbbL 2) = 5) as

\BbbL 2 =

\left[ 
        

1
3

 - 3
5

3
5

 - 9
7

5
7

 - 5
3

1
9

3
5

1
5

9
7

5
21

5
3

19
15

 - 1 1
5

 - 79
35

23
35

 - 101
45

41
63

59
35

 - 17
105

11
7

1
7

127
63

89
63

 - 139
105

97
35

 - 5
7

 - 1  - 79
21

61
81

293
135

239
135

205
63

 - 223
189

11
9

\right] 
        

, \bfc 2 =

\left[ 
         

 - 1
3
5
9

10
9

 - 14
9

 - 7
9

1

\right] 
         

, \BbbW \top 
2 =

\left[ 
         

 - 1
3

 - 3
5

 - 9
5

 - 27
7

 - 25
7

 - 25
3

\right] 
         

.

It follows that the two-variable rational function\bfH (s, t), given in the barycentric form,
recovers the original rational function \frakH (s, t). Then, a realization in the Lagrange basis
(with \{ 1\lambda j1 ,

2\lambda j2\} ) is obtained as \bfH (s, t) =\bfC \bfPhi (s, t) - 1\bfG , where \bfC = - \bfe \top 6 ,
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Φ(s, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s− 1 3− s 0 0 0 0

s− 1 0 5− s 0 0 0

− 1
3

10
9

− 7
9

t+ 1 0 0

5
9

− 14
9

1 −t− 3 0 0

1
9

−2 25
9

0 t+ 1 1
2

− 1
3

6 − 25
3

0 −t− 3 − 1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

1/2
−1/2

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

By applying the Schur complement the realization can be compressed to dimension 4,
at the expense of introducing a parameter-dependent output matrix \bfC (t).

4.3. The \bfitn -D Case.

4.3.1. Loewner Matrices and Sylvester Equations.
Definition 4.11. Given the data described in (3.3), the n-D Loewner matrix

\BbbL n \in \BbbC q1q2\cdot \cdot \cdot qn\times k1k2\cdot \cdot \cdot kn , has entries given by

\ell i1,i2,...,inj1,j2,...,jn
=

\bfv i1,i2,...,in  - \bfw j1,j2,...,jn

(1\mu i1  - 1\lambda j1) (
2\mu i2  - 2\lambda j2) \cdot \cdot \cdot (n\mu in  - n\lambda jn)

.

Definition 4.12. Considering the data given in (3.3), we define the following
matrices based on Kronecker products:

\bfLambda 1 =\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}
\bigl( 
1\lambda 1, . . . , 1\lambda k1

\bigr) 
\otimes \bfI k2

\otimes \bfI k3
\otimes \cdot \cdot \cdot \otimes \bfI kn , \bfM 1 =\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}

\bigl( 
1\mu 1, . . . , 1\mu q1

\bigr) 
\otimes \bfI q2\otimes \bfI q3\otimes \cdot \cdot \cdot \otimes \bfI qn

\bfLambda 2 = \bfI k1
\otimes \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}

\bigl( 
2\lambda 1, . . . , 2\lambda k2

\bigr) 
\otimes \bfI k3

\otimes \cdot \cdot \cdot \otimes \bfI kn , \bfM 2 = \bfI q1\otimes \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}
\bigl( 
2\mu 1, . . . , 2\mu q2

\bigr) 
\otimes \bfI q3\otimes \cdot \cdot \cdot \otimes \bfI qn

\cdot \cdot \cdot \cdot \cdot \cdot 
\bfLambda n = \bfI k1

\otimes \cdot \cdot \cdot \otimes \bfI kn - 1
\otimes \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} (n\lambda 1, . . . ,n\lambda kn ) , \bfM n = \bfI q1\otimes \cdot \cdot \cdot \otimes \bfI qn - 1\otimes \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} (n\mu 1, . . . ,n\mu qn ) ,

\BbbW n = [\bfw 1,1,...,1,\bfw 1,1,...,2, . . . ,\bfw 1,1,...,kn
,\bfw 1,...,2,1, . . . ,\bfw k1,k2,...,kn

], \bfR n = \bfone \top 
k1k2\cdot \cdot \cdot kn

,
\BbbV n = [\bfv 1,1,...,1,\bfv 1,1,...,2, . . . ,\bfv 1,1,...,qn ,\bfv 1,...,2,1, . . . ,\bfv q1,q2,...,qn ]

\top , and \bfL n = \bfone q1q2\cdot \cdot \cdot qn .

Theorem 4.13. The n-D Loewner matrix as introduced in Definition 4.11 is the
solution of the following set of coupled Sylvester equations:

\left\{ 
       
       

\bfM n\BbbX 1  - \BbbX 1\bfLambda n = \BbbV n\bfR n  - \bfL n\BbbW n,

\bfM n - 1\BbbX 2  - \BbbX 2\bfLambda n - 1 = \BbbX 1,

\cdot \cdot \cdot 
\bfM 2\BbbX n - 1  - \BbbX n - 1\bfLambda 2 = \BbbX n - 2,

\bfM 1\BbbL n  - \BbbL n\bfLambda 1 = \BbbX n - 1.

4.3.2. Null Space, Lagrange Basis Form, and Generalized Realization. When
using an appropriate number of interpolation points, we can compute the null space
of the n-variable Loewner matrix \BbbL n, i.e., \BbbL n\bfc n = 0. Here, we denote it with \bfc \top n =
[ \alpha 1 | | \alpha 2 | \cdot \cdot \cdot | | \alpha k1 ]\in \BbbC k1k2\cdot \cdot \cdot kn written in terms of

\alpha 1=
\bigl[ 
c1, ... ,1,1 . . . c1, ... ,1,kn c1, ... ,2,1 . . . c1, ... ,2,kn | \cdot \cdot \cdot | c1,k2, ... ,kn - 1,1 . . . c1,k2, ... ,kn - 1,kn

\bigr] 
,

\alpha 2 = [ c2,...,1,1 \cdot \cdot \cdot c2,...,1,kn | \cdot \cdot \cdot ] ,
\alpha k1 = [ ck1,k2,...,1 \cdot \cdot \cdot ck1,k2,...,kn ] ,

which are vectors that contain the so-called barycentric weights of the n-variable
rational function \bfH (1s, 2s, . . . ,ns) given by

\bfH (1s, 2s, . . . ,ns) =

\sum k1

j1=1

\sum k2

j2=1 \cdot \cdot \cdot 
\sum kn

jn=1
\beta j1,j2,...,jn

(1s - 1\lambda j1)(2s - 2\lambda j2)\cdot \cdot \cdot (ns - n\lambda jn )
\sum k1

j1=1

\sum k2

j2=1 \cdot \cdot \cdot 
\sum kn

jn=1
cj1,j2,...,jn

(1s - 1\lambda j1)(2s - 2\lambda j2)\cdot \cdot \cdot (ns - n\lambda jn )

,
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754 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

where \bfc \top n \odot \BbbW n = [ \beta 1 \beta 2 \cdot \cdot \cdot \beta k1 ] \in \BbbC k1k2\cdot \cdot \cdot kn . By construction, the function
\bfH (1s, 2s, . . . ,ns) expressed above interpolates \frakH (1s, 2s, . . . ,ns) at the support points
\{ 1\lambda j1 ,

2\lambda j2 , . . . ,
n\lambda jn\} .

Result 4.14 (n-D realization for k= 1). Given Definition 2.2 and following The-
orem 2.8, a generalized realization of \bfH (1s, 2s, . . . ,ns) is obtained with the following
settings: \BbbA \mathrm{L}\mathrm{a}\mathrm{g} = [ \alpha 1 \alpha 2 \cdot \cdot \cdot \alpha k1 ], \BbbB \mathrm{L}\mathrm{a}\mathrm{g} = [ \beta 1 \beta 2 \cdot \cdot \cdot \beta k1 ], \bfGamma = 1\BbbX \mathrm{L}\mathrm{a}\mathrm{g}, and
\bfDelta = 2\BbbX \mathrm{L}\mathrm{a}\mathrm{g}\otimes \cdot \cdot \cdot \otimes n\BbbX \mathrm{L}\mathrm{a}\mathrm{g}.

Example 4.15. Consider the three-variable rational function \frakH (s, t, p) = (s +
pt)/(p2 + s + t) of complexity (1,1,2). It is evaluated at 1\lambda j1 = [2,4], 2\lambda j2 = [1,3],
3\lambda j3 = [5,6,7] and 1\mu i1 =  - 1\lambda j1 ,

2\mu i2 =  - 2\lambda j2 ,
3\mu i3 =  - 3\lambda j3 . The resulting 3-D

Loewner matrix \BbbL 3 has \bfr \bfa \bfn \bfk (\BbbL 3) = 11 and

\bfc \top 3 =
\bigl[ 

1
2  - 39

28
13
14  - 15

28
41
28  - 27

28  - 15
28

41
28  - 27

28
4
7  - 43

28 1
\bigr] 
,

\BbbW 3 =
\bigl[ 

1
4

8
39

9
52

17
30

20
41

23
54

3
10

10
41

11
54

19
32

22
43

25
56

\bigr] 
.

Following Result 4.14, we may obtain the realization (\bfC ,\bfPhi (s, t, p),\bfG ). By arranging
as (s) - (t, p), one obtains a realization of dimension m = 13. Instead, by arranging
as (s, t)  - (p) we obtain m = 9. With the latter partitioning, we obtain \kappa = 2 \times 2
(associated with variables s and t) and \ell = 3 (associated with variable p). Thus, with
reference to the multi-indices of Definition 2.3, we readily have I1 = i13, I2 = i23 and
I3 = i33, and J1 = [j11 , j

1
2 ], J2 = [j21 , j

2
2 ], J3 = [j31 , j

3
2 ], and J4 = [j41 , j

4
2 ].

5. Variable Decoupling and Addressing the Curse of Dimensionality. As in-
troduced in Definition 4.11, it follows that the n-D Loewner matrix \BbbL n is of dimension
Q\times K, where Q= q1q2 . . . qn and K = k1k2 . . . kn. The dimension increases exponen-
tially with the number of parameters and the corresponding degrees (this is also
obvious when observing its Kronecker structure). Therefore, computing \bfc n results in
\scrO (QK2) or \scrO (KQ2) flop, which stands as a limitation of the proposed approach. It
is to be noted that the computationally most favorable case is K =Q=N , for which
the complexity is \scrO (N3) flop.

The need for the full matrix to perform the SVD decomposition renders the process
unfeasible in practice for many data sets. Here, the \bfC -\bfo -\bfD is addressed through a
tailored n-D Loewner matrix null space decomposition which results in the decoupling
of the variables. More specifically, in this section we suggest an alternate approach
allowing us to construct \bfc n without constructing \BbbL n. This approach \bft \bfa \bfm \bfe \bfs the\bfC -\bfo -\bfD 
by constructing a sequence of 1-D Loewner matrices and computing their associated
null space instead. Similar to the previous sections, for clarity, we start with the
2-D and 3-D cases before addressing the n-D case. We finally show that in the n-
D case, the null space boils down to (i) a 1-D Loewner matrix null space and (ii)
multiple (n - 1)-D Loewner matrix null spaces. With a recursive procedure, (n - 1)-D
becomes (n - 2)-D, etc. This then leads to a series of 1-D Loewner matrix null space
computations. Avoiding the explicit large-scale n-D Loewner matrix construction,
which is replaced by small-scale 1-D Loewner matrices, results in drastic flop and
storage savings.

5.1. Null Space Computation in the 2-D Case.
Theorem 5.1. Let hi,j \in \BbbC be measurements of the transfer function \frakH (1s, 2s),

with 1si, i= 1, . . . , n, and 2sj, j = 1, . . . ,m. Let k1 = n/2 and k2 =m/2 be the numbers

of column interpolation points (see P
(2)
c in (3.2)). The null space of the corresponding

2-D Loewner matrix is spanned by4

4\mathrm{W}\mathrm{e} \mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e} \mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} n = k1 + q1 \mathrm{a}\mathrm{n}\mathrm{d} m = k2 + q2, \mathrm{a}\mathrm{n}\mathrm{d} k1 = q1 \mathrm{a}\mathrm{n}\mathrm{d} k2 = q2. \mathrm{I}\mathrm{n} \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}
\mathrm{c}\mathrm{o}\mathrm{n}fi\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}, \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}fi\mathrm{c} \mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{i}\mathrm{s} \mathrm{n}\mathrm{e}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{d}.
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\scrN (\BbbL 2) = \bfv \bfe \bfc 

\biggl[ 
\bfc 

2\lambda 1

1 \cdot 
\Bigl[ 
\bfc 

1\lambda k1
1

\Bigr] 
1
, . . . ,\bfc 

2\lambda k2
1 \cdot 

\Bigl[ 
\bfc 

1\lambda k1
1

\Bigr] 
k2

\biggr] 
,(5.1)

where \bfc 
1\lambda k1
1 =\scrN (\BbbL 

1\lambda k1
1 ) is the null space of the 1-D Loewner matrix for frozen 1s =

1\lambda k1 and \bfc 
2\lambda j

1 = \scrN (\BbbL 
2\lambda j

1 ) is the jth null space of the 1-D Loewner matrix for frozen
2sj = \{ 2\lambda 1, . . . ,

2\lambda k2
\} .

Proposition 5.2. Given the setup in Theorem 5.1, the null space computation
flop complexity is k31 + k1k

3
2 or k32 + k2k

3
1, rather than k31k

3
2.

Proof. For simplicity of exposition, let us denote by hi,j \in \BbbC the value of a transfer
function \frakH (si, tj). We denote the Lagrange monomials by s - si, i= 1, . . . , n, and by
t - tj , j = 1, . . . ,m. Then, let the response tableau (the data used for constructing
the Loewner matrix) and corresponding barycentric weights \BbbA \mathrm{L}\mathrm{a}\mathrm{g} be defined as

\left[ 
        

t1 t2 \cdot \cdot \cdot tm

s1 h1,1 h1,2 \cdot \cdot \cdot h1,m

s2 h2,1 h2,2 \cdot \cdot \cdot h2,m

...
...

... \cdot \cdot \cdot 
...

sn - 1 hn - 1,1 hn - 1,2 \cdot \cdot \cdot hn - 1,m

sn hn,1 hn,2 \cdot \cdot \cdot hn,m

\right] 
        

\underbrace{}  \underbrace{}  
\bft \bfa \bfb 2

,

\left[ 
        

t1 t2 \cdot \cdot \cdot tm
s1 \alpha 1,1 \alpha 1,2 \cdot \cdot \cdot \alpha 1,m

s2 \alpha 2,1 \alpha 2,2 \cdot \cdot \cdot \alpha 2,m

...
...

... \cdot \cdot \cdot 
...

sn - 1 \alpha n - 1,1 \alpha n - 1,2 \cdot \cdot \cdot \alpha n - 1,m

sn \alpha n,1 \alpha n,2 \cdot \cdot \cdot \alpha n,m

\right] 
        

\underbrace{}  \underbrace{}  
\BbbA Lag

.

It follows that the denominator polynomial in the Lagrange basis is given as
\bfd (s, t) = \pi 

\sum n,m
i,j=1

\alpha i,j

(s - si)(t - tj)
, where \pi = \Pi n

i=1\Pi 
m
j=1(s  - si)(t  - tj). The coefficients

are given by the null space of the associated 2-D Loewner matrix, i.e., \scrN (\BbbL 2) =
\bfs \bfp \bfa \bfn (\bfv \bfe \bfc (\BbbA \mathrm{L}\mathrm{a}\mathrm{g})) (where \BbbA \mathrm{L}\mathrm{a}\mathrm{g} = [\alpha i,j ]).

If we now set t= tj (j = 1, . . . ,m), the denominator polynomial becomes \bfd (s, tj) =
\pi tj

\sum n
i

\alpha i,j

(s - si)
, where \pi tj = \Pi n

i=1(s  - si)\Pi k \not =j(tj  - tk). In this case, the coefficients

are given by the null space of the associated 1-D Loewner matrix, i.e., \scrN (\BbbL tj
1 ) =

\bfs \bfp \bfa \bfn ([\alpha 1,j , . . . , \alpha n - 1,j , \alpha n,j ]
\top ). Thus, these quantities reproduce the columns of \BbbA \mathrm{L}\mathrm{a}\mathrm{g},

up to a constant, for each column.
Similarly, for s= sn, we obtain \bfd (sn, t) = \pi sn

\sum m
j

\alpha n,j

(t - tj)
, where \pi sn = \Pi n - 1

i=1 (sn  - 
si)\Pi 

m
j=1(t - tj). Again, the coefficients are given by the null space of the associated

1-D Loewner matrix, i.e., \scrN (\BbbL sn
1 ) = \bfs \bfp \bfa \bfn ([\alpha n,1, . . . , \alpha n,m - 1, \alpha n,m]\top ).

This reproduces the last row of \BbbA \mathrm{L}\mathrm{a}\mathrm{g}, up to a constant. To eliminate these con-
stants, we divide the corresponding vectors by \alpha i,m and obtain the following vectors:

\alpha 1,1

\alpha n,1

\alpha 1,2

\alpha n,2
\cdot \cdot \cdot \alpha 1,m - 1

\alpha n,m - 1

\alpha 1,m

\alpha n,m
\alpha 2,1

\alpha n,1

\alpha 2,2

\alpha n,2
\cdot \cdot \cdot \alpha 2,m - 1

\alpha n,m - 1

\alpha 2,m

\alpha n,m
...

... \cdot \cdot \cdot 
...

...
\alpha n - 1,1

\alpha n,1

\alpha n - 1,2

\alpha n,2
\cdot \cdot \cdot \alpha n - 1,m - 1

\alpha n,m - 1

\alpha n - 1,m

\alpha n,m

1 1 \cdot \cdot \cdot 1 1

\alpha n,1

\alpha n,m

\alpha n,2

\alpha n,m
\cdot \cdot \cdot \alpha n,m - 1

\alpha n,m
1

Finally, multiplying the jth column with the jth entry of the last row yields a vector
that spans the desired null space of \BbbL 2. The procedure requires computing the null
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Table 3 2-D tableau for Example 5.4: tab2.

1s

2s 2λ1 = −1 2λ2 = −3 2μ1 = −2 2μ2 = −4

1λ1 = 1 h1,1 = − 1
3

h1,2 = − 3
5

h1,3 = − 1
2

h1,4 = − 2
3

1λ2 = 3 h2,1 = − 9
5

h2,2 = − 27
7

h2,3 = −3 h2,4 = − 9
2

1λ3 = 5 h3,1 = − 25
7

h3,2 = − 25
3

h3,3 = − 25
4

h3,4 = −10

1μ1 = 0 h4,1 = 0 h4,2 = 0 h4,3 = 0 h4,4 = 0

1μ2 = 2 h5,1 = −1 h5,2 = −2 h5,3 = − 8
5

h5,4 = − 16
7

1μ3 = 4 h6,1 = − 8
3

h6,2 = −6 h6,3 = − 32
7

h6,4 = − 64
9

space of m 1-D Loewner matrices of size n\times n and one 1-D Loewner matrix of size
m\times m. Consequently, the number of flops is mn3 +m3 instead of n3m3, concluding
the proof.

Remark 5.3 (normalization with other elements). In the above treatment, we
normalize with the last element of the last row. However, it is clear that normalization
with other elements can be chosen. This is especially relevant if the last element is
zero, i.e., \alpha n,m = 0. In such a case, if we choose the kth row, we need the barycentric
coefficients of the kth first variable.

Example 5.4. Continuing Example 4.10, we construct the tableau with the corre-
sponding values, leading to Table 3. Here, instead of constructing the 2-D Loewner
matrix \BbbL 2 as in Example 4.10, we invoke Theorem 5.1. We thus construct a sequence
of 1-D Loewner matrices as follows:5

\bullet First, construct a 1-D Loewner matrix along 1s for 2s = 2\lambda 2 =  - 3, i.e.,
considering data of \bft \bfa \bfb 2(:,2) (second column). This leads to

\BbbL 
2\lambda 2

1 =

\left[ 
  
 - 3

5  - 9
7  - 5

3

 - 7
5  - 13

7  - 19
9

 - 9
5  - 15

7  - 7
3

\right] 
  and \bfc 

2\lambda 2

1 =

\left[ 
  

5
9

 - 14
9

1

\right] 
  .

\bullet Then, construct three 1-D Loewner matrices along 2s for 1s= \{ 1\lambda 1,
1\lambda 2,

1\lambda 3\} ,
i.e., considering data of \bft \bfa \bfb 2(1, :), \bft \bfa \bfb 2(2, :), and \bft \bfa \bfb 2(3, :) (first, second, and

third rows). This leads to: \BbbL 
1\lambda 1

1 =
\Bigl[ 

1
6

1
10

1
9

1
15

\Bigr] 
\Rightarrow \bfc 

1\lambda 1

1 =
\Bigl[ 
 - 3

5
1

\Bigr] 
, \BbbL 

1\lambda 2

1 =
\Bigl[ 

6
5

6
7

9
10

9
14

\Bigr] 

\Rightarrow \bfc 
1\lambda 2

1 =
\Bigl[ 
 - 5

7
1

\Bigr] 
, \BbbL 

1\lambda 3

1 =
\Bigl[ 

75
28

25
12

15
7

5
3

\Bigr] 
\Rightarrow \bfc 

1\lambda 3

1 =
\Bigl[ 
 - 7

9
1

\Bigr] 
.

\bullet Finally, \^\bfc 2 =
\bigl[ 
\bfc 

1\lambda 1

1 \cdot [\bfc 
2\lambda 2

1 ]1 \bfc 
1\lambda 2

1 \cdot [\bfc 
2\lambda 2

1 ]2 \bfc 
1\lambda 3

1 \cdot [\bfc 
2\lambda 2

1 ]3
\bigr] \top 

, and the scaled
null space vector is equal to \bfc 2, directly obtained with the 2-D Loewner
matrix (see Example 4.10). Similarly, the rational function and realization
follow.

The corresponding computational cost is obtained by adding the following flop: one
1-D Loewner matrix of dimension 3\times 3 \rightsquigarrow null space computation takes 33 = 27 flop

and three 2\times 2 1-D Loewner matrices \rightsquigarrow null space computation take 23 = 8 flop.
Thus, 27 + 3 \times 8 = 51 flop are needed here, while 63 = 216 flop were required in
Example 4.10, involving \BbbL 2 directly. Note that the very same result may be obtained

by computing first \scrN (\BbbL 
1\lambda 3

1 ) \in \BbbR 2 then \scrN (\BbbL 
2\lambda 1

1 ), \scrN (\BbbL 
2\lambda 2

1 ) \in \BbbR 3. In this case, the
computational cost would be 23 + 2\times 33 = 62 flop.

5\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{e}, n= 6, m= 4, k1 = 3, k2 = 2.
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5.2. Null Space Computation in the 3-D Case.
Theorem 5.5. Let hi,j,k \in \BbbC be measurements of the response of a transfer

function \frakH (1s, 2s, 3s), along with 1si,
2sj, and 3sk (i = 1, . . . , n, j = 1, . . . ,m, and

k = 1, . . . , p), and let k1 \leq n/2, k2 \leq m/2, and k3 \leq p/2 be the number of column

interpolation points (see P
(3)
c in (3.3), n = 3). The null space of the corresponding

3-D Loewner matrix is spanned by6

\scrN (\BbbL 3) = \bfv \bfe \bfc 

\biggl[ 
\bfc 

1\lambda 1

2 \cdot 
\Bigl[ 
\bfc 
(2\lambda k2

,3\lambda k3
)

1

\Bigr] 
1
, . . . ,\bfc 

1\lambda k1
2 \cdot 

\Bigl[ 
\bfc 
(2\lambda k2

,3\lambda k3
)

1

\Bigr] 
k1

\biggr] 
,(5.2)

where \bfc 
(2\lambda k2

,3\lambda k3
)

1 = \scrN (\BbbL (2\lambda k2
,3\lambda k3

)
1 ) is the null space of the 1-D Loewner matrix for

frozen \{ 2s, 3s\} = \{ 2\lambda k2
, 3\lambda k3

\} , and \bfc 
1\lambda j

2 = \scrN (\BbbL 
1\lambda j

2 ) is the jth null space of the 2-D
Loewner matrix for frozen 1sj = \{ 1\lambda 1, . . . ,

1\lambda k1
\} .

Proof. The proof follows that of Theorem 5.1. First, a 1-D null space Loewner
matrix is computed for two frozen variables. Then a series of 2-D Loewner matrices
are computed along with the two other variables. Scaling is similarly applied.

Remark 5.6 (toward recursivity). From Theorem 5.5, it follows that the 3-D
Loewner matrix null space may be obtained from one 1-D Loewner matrix, followed
by multiple 2-D Loewner matrices. Then, invoking Theorem 5.1, these 2-D Loewner
matrix null spaces may be split into a sequence of 1-D Loewner matrix null spaces.
Therefore, a recursive scheme naturally appears (see Example 5.7).

Example 5.7. We continue with Example 4.15. We now illustrate how much the
complexity and dimensionality issue may be reduced when applying the suggested
recursive process. First, recall that the 3-D Loewner matrix \BbbL 3 has a dimension of 12
and its null space is \bfc \top 3 = [\bfc \top 3,1| | \bfc \top 3,2] is given as

\bfc 3 =
\bigl[ 

1
2  - 39

28
13
14  - 15

28
41
28  - 27

28  - 15
28

41
28  - 27

28
4
7  - 43

28 1
\bigr] \top 

.

Computing such a null space requires an SVD matrix decomposition of complexity
123 = 1,728 flop. Here, instead of constructing the 3-D Loewner matrix \BbbL 3 as in
Example 4.15, one may construct a sequence of 1-D Loewner matrices using a recursive
approach as follows.

\bullet First, a 1-D Loewner matrix along the first variable 1s for frozen second
and third variables 2\lambda 2 = 3 and 3\lambda 3 = 7, i.e., elements of \bft \bfa \bfb 3(:,2,3), is
constructed, leading to

\BbbL (2\lambda 2,
3\lambda 3)

1 =

\Biggl[ 
31

2700
31

2800
31

2592
31

2688

\Biggr] 
and \bfc 

(2\lambda 2,
3\lambda 3)

1 =

\Biggl[ 
 - 27

28

1

\Biggr] 
.

\bullet Second, as 1\lambda j is of dimension two (k1 = 2), two 2-D Loewner matrices
appear, one for frozen 1\lambda 1 and one for frozen 1\lambda 2, along 2s and 3s, i.e.,
elements of \bft \bfa \bfb 3(1, :, :) and \bft \bfa \bfb 3(2, :, :). The first and second 2-D Loewner
matrices lead to null spaces spanned by

\bfc 
1\lambda 1

2 =

\biggl[  - 14
27

,
13

9
,
 - 26
27

,
5

9
,
 - 41
27

, 1

\biggr] \top 
,\bfc 

1\lambda 2

2 =

\biggl[  - 15
28

,
41

28
,
 - 27
28

,
4

7
,
 - 43
28

, 1

\biggr] \top 
,

6\mathrm{W}\mathrm{e} \mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e} \mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} n = k1 + q1, m = k2 + q2, \mathrm{a}\mathrm{n}\mathrm{d} p = k3 + q3, \mathrm{a}\mathrm{n}\mathrm{d} k1 = q1, k2 = q2, \mathrm{a}\mathrm{n}\mathrm{d}
k3 = q3. \mathrm{I}\mathrm{n} \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r} \mathrm{c}\mathrm{o}\mathrm{n}fi\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}, \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}fi\mathrm{c} \mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{i}\mathrm{s} \mathrm{n}\mathrm{e}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{d}.
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758 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

which can now be scaled by the coefficients of \bfc 
(2\lambda 2,

3\lambda 3)
1 , leading to

\^\bfc 3 =
\Bigl[ 
\bfc 

1\lambda 1

2 \cdot [\bfc (
2\lambda 2,

3\lambda 3)
1 ]1 \bfc 

1\lambda 2

2 \cdot [\bfc (
2\lambda 2,

3\lambda 3)
1 ]2

\Bigr] \top 
= \bfc 3.

By considering the first 2-D Loewner matrix \BbbL 
1\lambda 1

2 , leading to the null space \bfc 
1\lambda 1

2 , the
very same process as that presented in the previous subsection (2-D case) may be
performed (to avoid the 2-D matrix construction). In what follows we describe this

iteration (for \bfc 
1\lambda 1

2 only, as it similarly applies to \bfc 
1\lambda 2

2 ).
\bullet First, one constructs the 1-D Loewner matrix along the second variable 2s

for frozen first and third variables, i.e., elements of \bft \bfa \bfb 3(1, :,3), leading to

\BbbL (1\lambda 1,
3\lambda 3)

1 =

\Biggl[ 
71
520

71
540

355
2496

355
2592

\Biggr] 
and \bfc 

(1\lambda 1,
3\lambda 3)

1 =

\Biggl[ 
 - 26

27

1

\Biggr] 
.

\bullet Second, as 2\lambda k2
is of dimension two (k2 = 2), two 1-D Loewner matrices

appear, one for frozen 2\lambda 1 and one for frozen 2\lambda 2, along
3s (here again, 1s is

frozen to 1\lambda 1). The first and second 1-D Loewner matrices lead to the null
spaces

\bfc 
(1\lambda 1,

2\lambda 1)
1 =

\bigl[ 
7
13  - 3

2 1
\bigr] \top 

and \bfc 
(1\lambda 1,

2\lambda 2)
1 =

\bigl[ 
5
9  - 41

27 1
\bigr] \top 

,

which can now be scaled by the coefficients of \bfc 
(1\lambda 1,

3\lambda 3)
1 , leading to

\Biggl[ 
\bfc 
(1\lambda 1,

2\lambda 1)
1 \cdot [\bfc (

1\lambda 1,
3\lambda 3)

1 ]1

\bfc 
(1\lambda 1,

2\lambda 2)
1 \cdot [\bfc (

1\lambda 1,
3\lambda 3)

1 ]2

\Biggr] 
= \bfc 

1\lambda 1

2 .

Scaling \bfc 
1\lambda 1

2 with the first element of \bfc 
(2\lambda 2,

3\lambda 3)
1 then leads to \bfc \top 3,1.

This step is repeated for \BbbL 
1\lambda 2

2 , leading, to the null space \bfc 
1\lambda 2

2 . The later is scaled

with the second element of \bfc 
(2\lambda 2,

3\lambda 3)
1 , leading to \bfc \top 3,2. By checking the complexity, one

observes that only a collection of 1-D Loewner matrices needs to be constructed, as
well as their null spaces. Here are constructed (i) one 1-D Loewner matrix along 1s of
dimension 2\times 2 and (ii) two 2-D Loewner matrices along 2s and 3s, recast as two 1-D
Loewner matrices along 2s of dimension 2\times 2 and four 1-D Loewner matrices along 3s
of dimension 3\times 3. The resulting complexity is (1\times 23)+(2\times 23)+(4\times 33) = 132 flop,
which is much less than 1,728 flop for \BbbL 3. One may also notice that changing the
variable orders as 1s\leftarrow 3s and 3s\leftarrow 1s would lead to (1\times 33)+(3\times 23)+(6\times 23) = 99.
In both cases, the multivariate Loewner matrices are no longer needed and can be
replaced by a series of single variables, taming the C-o-D.

5.3. Null Space Computation in the \bfitn -D Case and Variable Decoupling. We
now state the second main result of this paper: Theorems 5.8 and 5.9 which allow
us to address the \bfC -\bfo -\bfD related to the null space computation of the n-D Loewner
matrix. This is achieved by splitting an n-D Loewner matrix null space into one 1-D
and a collection of (n - 1)-D null spaces, thus another sequence of 1-D and (n - 2)-D
null spaces, and so on. . ..

Theorem 5.8. Given the tableau \bfitt \bfita \bfitb n as in Table 2, being the evaluation of the
n-variable \frakH function (1.2) at the data set (3.3), the null space of the corresponding
n-D Loewner matrix \BbbL n is spanned by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LOEWNER FRAMEWORK FOR PARAMETRIC DYNAMICAL SYSTEMS 759

\bfv \bfe \bfc 

\biggl[ 
\bfc 

1\lambda 1

n - 1 \cdot 
\Bigl[ 
\bfc 
(2\lambda k2

,3\lambda k3
,...,n\lambda kn )

1

\Bigr] 
1
, . . . ,\bfc 

1\lambda k1
n - 1 \cdot 

\Bigl[ 
\bfc 
(2\lambda k2

,3\lambda k3
,...,n\lambda kn )

1

\Bigr] 
k1

\biggr] 
,

where \bfc 
(2\lambda k2

,3\lambda k3
,...,n\lambda kn )

1 spans \scrN (\BbbL (2\lambda k2
,3\lambda k3

,...,n\lambda kn )
1 ), i.e., the nullspace of the 1-D

Loewner matrix for frozen \{ 2s, 3s, . . . ,ns\} = \{ 2\lambda k2 ,
3\lambda k3 , . . . ,

n\lambda kn\} , and \bfc 
1\lambda j

n - 1 spans

\scrN (\BbbL 
1\lambda j

n - 1), i.e., the jth null space of the (n  - 1)-D Loewner matrix for frozen 1sj =
\{ 1\lambda 1, . . . ,

1\lambda k1
\} .

Proof. The proof follows that given for the 2-D and 3-D cases.

Theorem 5.8 provides a means to compute the null space of an n-D Loewner
matrix via one 1-D and k1 (n - 1)-D Loewner matrices. Evidently, the latter (n - 1)-
D Loewner matrix null spaces may also be obtained by k1 1-D Loewner matrices plus
k1k2 (n - 2)-D Loewner matrices. This reveals a recursive scheme that splits the n-D
Loewner matrix into a set of 1-D Loewner matrices. As a consequence, the following
decoupling theorem holds.

Theorem 5.9. Given data (3.3) and Theorem 5.8, the latter achieves decoupling
of the variables and the null space can be equivalently written as

(5.3) \bfc n = \bfc 
ns
\underbrace{}  \underbrace{}  

\bfB \bfa \bfr \bfy (ns)

\odot (\bfc 
n - 1s \otimes \bfone kn

)\underbrace{}  \underbrace{}  
\bfB \bfa \bfr \bfy (n - 1s)

\odot (\bfc 
n - 2s \otimes \bfone knkn - 1

)\underbrace{}  \underbrace{}  
\bfB \bfa \bfr \bfy (n - 2s)

\odot \cdot \cdot \cdot \odot (\bfc 
1s \otimes \bfone kn...k2

)\underbrace{}  \underbrace{}  
\bfB \bfa \bfr \bfy (1s)

,

where \bfc 
ls denotes the vector of barycentric coefficients related to the lth variable.

As an illustration, in Theorem 5.9, \bfc 
1s = \bfc 

(2\lambda k2
,3\lambda k3

,...,n\lambda kn )
1 , while \bfc 

2s is the

vectorized collection of k1 vectors \bfc 
(1\lambda 1,

3\lambda k3
,...,n\lambda kn )

1 , . . . ,\bfc 
(1\lambda k1

,3\lambda k3
,...,n\lambda kn )

1 , and so
on. In section 6 and (6.1), an illustrative numerical example is given. Next, we assess
how much this contributes to taming the \bfC -\bfo -\bfD , in terms of both flop and memory
savings.

5.4. Summary of Complexity, Memory Requirements, and Accuracy. Let us
now state the main complexity result, related to Theorem 5.8, which is stated in
Theorems 5.10 and 5.13, being the two major justifications for taming the \bfC -\bfo -\bfD .
They describe the drastic reductions in the computational complexity and the required
memory.

Theorem 5.10. The flop count for the recursive approach Theorem 5.8 is

(5.4) flop1 =

n\sum 

j=1

\Biggl( 
k3j

j\prod 

l=1

kl - 1

\Biggr) 
, where k0 = 1.

Proof. Consider a function in n variables ls of degree dl > 1, l= 1, . . . , n (and let
kl = dl + 1). Table 4 shows the complexity as a function of the number of variables.

Hence, the total number of flop required to compute an element of the null space
of the n-D Loewner matrix \BbbL n is

flop1 = k31 + (k1)k
3
2 + \cdot \cdot \cdot + (k1k2 \cdot \cdot \cdot kn - 2) k

3
n - 1 + (k1k2 \cdot \cdot \cdot kn - 2kn - 1) k

3
n

= k31 + k1
\bigl( 
k32 + k2

\bigl( 
k33 + \cdot \cdot \cdot kn - 2

\bigl( 
k3n - 1 + kn - 1

\bigl( 
k3n
\bigr) \bigr) \bigr) \bigr) 

.
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760 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

Table 4 Complexity table as a function of the number of variables.

\# \mathrm{o}\mathrm{f} \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s} \mathrm{o}\mathrm{f} \frakH \#\BbbL 1 \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x} \mathrm{S}\mathrm{i}\mathrm{z}\mathrm{e} \mathrm{o}\mathrm{f} \mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h} \BbbL 1 \ttf \ttl \tto \ttp \mathrm{p}\mathrm{e}\mathrm{r} \BbbL 1

n k1 k2 \cdot \cdot \cdot kn - 2 kn - 1 kn k3n

n - 1 k1 k2 \cdot \cdot \cdot kn - 2 kn - 1 k3n - 1

...
...

...
...

3 k1 k2 k3 k33

2 k1 k2 k32

1 1 k1 k31

Corollary 5.11. The variable arrangement that minimizes the flop cost is
the one obtained by reordering the variables ls in decreasing complexity order dl, i.e.,
dl \geq dl+1 for l= 1, . . . , n - 1.

Corollary 5.12. The most computationally demanding configuration occurs
when each ls order satisfies dl = kl - 1 = k - 1 (l= 1, . . . , n), requiring k interpolation
points each. The worst case flop is (note that N = kn)

(5.5) flop1 = k3 + k4 + \cdot \cdot \cdot + kn+2 = k3
1 - kn

1 - k
= k3

1 - N

1 - k
.

Note that (5.5) is an (n finite) geometric series of ratio k. Consequently, an upper
bound of (5.5) can be estimated by considering that k > 1 and for a different number
of variables n. As an example, for n= \{ 1,2,3,4, . . .\} , the complexity is upper bounded
by \{ \scrO (N3),\scrO (N2.30),\scrO (N1.94),\scrO (N1.73), . . .\} , respectively. One can clearly observe
that when the number of variables n> 1, the flop complexity drops to 2.30, and this
decreases as n increases; e.g., for n= 50, one obtains \scrO (N1.06).

In Figure 1, we show the result in Theorem 5.10 (cascaded n-D Loewner) and
compare it to the reference full \BbbL n null space computation via SVD,7 of complexity
\scrO (N3) and with \scrO (N2) and \scrO (N log(N)) references. In the same figure, we evaluate
the worst case (5.5) for different numbers of considered variables n = \{ 1,2, . . . ,50\} 
(each is evaluated with complexity k = 1, . . . ,50). Then, we evaluate an upper com-
plexity approximate of the form \scrO (Nx), where x > 0 is to be an upper bound of the
data set.

With similar importance, the data storage is a key element in the \bfC -\bfo -\bfD . In
complex and double precision, the construction of the n-D Loewner matrix \BbbL n \in 
\BbbC N\times N , where N = k1k2 \cdot \cdot \cdot kn, requires disk storage of 8

220N
2 MB. The following

theorem states the result in the 1-D case.

Theorem 5.13. Following the procedure in Theorem 5.8, one only needs to se-
quentially construct single 1-D Loewner matrices, each of dimension \BbbL 1 \in \BbbC kl\times kl .
The largest stored matrix is \BbbL 1 \in \BbbC kmax\times kmax , where kmax = maxl kl (l = 1, . . . , n). In
complex and double precision, the maximum disk storage is 8

220 k
2
max MB.

As an illustration, for a 6-variable problem with complexity [19,5,3,5,7,1], one
requires [k1, k2, k3, k4, k5, k6] = [20,6,4,6,8,2] points, and then N = 46,080. The n-D
Loewner matrix requires 31.64 GB of storage, while the 1-D version would require, in
the worst-case scenario (i.e., for k\mathrm{m}\mathrm{a}\mathrm{x} = 20), only 6.25 KB of storage.

7\mathrm{O}\mathrm{n}\mathrm{e} \mathrm{s}\mathrm{h}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{d} \mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} \mathrm{w}\mathrm{e} \mathrm{a}\mathrm{r}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e} K =Q=N \mathrm{t}\mathrm{o} \mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{y} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}.
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Fig. 1 \ttf \ttl \tto \ttp comparison: Cascaded n-D Loewner worst-case upper bounds for a varying number of
variables n, while the full n-D Loewner is \scrO (N3) (black dashed); comparisons with \scrO (N2)
and \scrO (N \mathrm{l}\mathrm{o}\mathrm{g}(N)) references are shown by dash-dotted and dotted black lines.

Remark 5.14. In addition to computational complexity and storage, this method
improves the numerical accuracy. For instance, in the modest case of a function with
complexity [9,7,2], the rank of the 3-D Loewner matrix in floating point is much bigger
than one. The method proposed in this paper, therefore, makes the computation of
the barycentric weights possible.

From the above considerations, it follows that the proposed null space computa-
tion method leads to a drop in not only the computational complexity of the worst-case
scenario but also the memory requirements.

As illustrated in section 8, this allows the treatment of problems with a large num-
ber of variables, in a reasonable computational time and with manageable complexity,
which is the main reason for claiming that the \bfC -\bfo -\bfD \bfh \bfa \bfs \bfb \bfe \bfe \bfn ``\bft \bfa \bfm \bfe \bfd .""

6. Connection to the Kolmogorov Superposition Theorem. Several researchers
have contributed to sharpening Kolmogorov's original result, so currently it is often
referred to as the Kolmogorov, Arnol'd, Kahane, Lorenz, and Sprecher Theorem (see
[38], Theorem 2.1). For simplicity, we will follow [38] and state this result for n= 3,
so that we can compare it with Theorem 5.9.

Theorem 6.1. Given a continuous function f : [0,1]3 \rightarrow \BbbR of three variables,
there exist real numbers \lambda i, i= 1,2, single-variable continuous functions \phi k : [0,1]\rightarrow 
\BbbR , k= 1, . . . ,7, and a single-variable function g : \BbbR \rightarrow \BbbR such that

f(x1, x2, x3) =

7\sum 

k=1

g(\phi k(x1) + \lambda 1\phi k(x2) + \lambda 2\phi k(x3)) \forall (x1, x2, x3)\in [0,1]3 .

In the above result, \lambda i and \phi k do not depend on f . Thus, for n = 3, eight functions
are needed together with two real scalars \lambda i.

The goal of this section is to make contact with KST using a three-variable
example.

Example 6.2. Consider the three-variable function \frakH (s, t, x) = s2+xs+1
t+x+st+2 . Since

the degrees in each variable are (2,1,1), we will need the integers k1 = 3, k2 = 2, and
k3 = 2. This implies that N = k1k2k3 = 12. The right and left interpolation points are
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762 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

chosen as s1 = 1, s2 = 2, s3 = 3; t1 = 4, t2 = 5; x1 = 6, x2 = 7, and s4 = 3/2, s5 = 5/2,
s6 = 7/2; t3 = 9/5, t4 = 11/5; x3 = 13/3, x4 = 5, respectively. Following the theory
developed above, the right triples of interpolation points are \bfS = [\bfs 1, \bfs 2, \bfs 3]\otimes \bfone 2\otimes \bfone 2,
\bfT = \bfone 3\otimes [\bft 1, \bft 2]\otimes \bfone 2, \bfX = \bfone 3\otimes \bfone 2\otimes [\bfx 1, \bfx 2] \in \BbbC 1\times N (where \bfs i = s - si, \bft i = t - ti, and
\bfx i = x - xi). Thus, the resulting 3-D Loewner matrix has dimension 12\times 12, with the
12 barycentric weights given by (for emphasis, we denote by \bfB \bfa \bfr \bfy what was earlier
denoted by \bfc )

\bfB \bfa \bfr \bfy =

\biggl[ 
16

29
 - 17

29
 - 18

29

19

29
 - 40

29

42

29

46

29
 - 48

29

24

29
 - 25

29
 - 28

29
1

\biggr] \top 
.

As already shown, a decomposition of this vector follows in a (pointwise) product
of barycentric weights with respect to each variable, separately. Thus, decoupling
of the problem is achieved (which is one of the important aspects of KST), and
the following is obtained: \bfB \bfa \bfr \bfy = \bfB \bfa \bfr \bfy x \odot \bfB \bfa \bfr \bfy t \odot \bfB \bfa \bfr \bfy s, where \odot denotes the
pointwise product. This is (5.3) for n = 3 and is the key result that allows the
connection with KST and the taming of the C-o-D. We have shown that the 3-D
multivariate function can be computed in terms of three 1-D functions (one in each
variable). These functions denoted below by \bfPhi (x), \bfPsi (t), and \bfOmega (s) are obtained from
a collection of null space computations: 1 along s, 3 along t, and 6 along x. More
specifically, following notations of Theorem 5.9,

(6.1)

\bfc x =vec

\biggl( 
 - 16

17  - 18
19  - 20

21  - 23
24  - 24

25  - 28
29

1 1 1 1 1 1

\biggr) 
, \bfB \bfa \bfr \bfy x = \bfc x,

\bfc t =vec

\biggl( 
 - 17

19  - 7
8  - 25

29
1 1 1

\biggr) 
, \bfB \bfa \bfr \bfy t = \bfc t \otimes \bfone 3,

\bfc s =vec
\bigl( 

19
29  - 48

29 1
\bigr) 
, \bfB \bfa \bfr \bfy s = \bfc s \otimes \bfone 3\cdot 2.

Furthermore, \bfL \bfa \bfg (x), \bfL \bfa \bfg (t), and \bfL \bfa \bfg (s) are the monomials of the Lagrange bases
components in each variable. Finally, \bfW are the right interpolation values for the
triples in \bfS \times \bfT \times \bfX . The ensuing numerical values are as follows:\left[                           

 - 16
17

1

 - 18
19

1

 - 20
21

1

 - 23
24

1

 - 24
25

1

 - 28
29

1

\right]                           
\underbrace{}  \underbrace{}  

\bfB \bfa \bfr \bfy x

,

\left[                           

 - 17
19

 - 17
19

1

1

 - 7
8

 - 7
8

1

1

 - 25
29

 - 25
29

1

1

\right]                           
\underbrace{}  \underbrace{}  

\bfB \bfa \bfr \bfy t

,

\left[                           

19
29
19
29
19
29
19
29

 - 48
29

 - 48
29

 - 48
29

 - 48
29

1

1

1

1

\right]                           
\underbrace{}  \underbrace{}  

\bfB \bfa \bfr \bfy s

,

\left[                            

1
x - 6
1

x - 7
1

x - 6
1

x - 7
1

x - 6
1

x - 7
1

x - 6
1

x - 7
1

x - 6
1

x - 7
1

x - 6
1

x - 7

\right]                            
\underbrace{}  \underbrace{}  

\bfL \bfa \bfg (x)

,

\left[                            

1
t - 4
1

t - 4
1

t - 5
1

t - 5
1

t - 4
1

t - 4
1

t - 5
1

t - 5
1

t - 4
1

t - 4
1

t - 5
1

t - 5

\right]                            
\underbrace{}  \underbrace{}  

\bfL \bfa \bfg (t)

,

\left[                            

1
s - 1
1

s - 1
1

s - 1
1

s - 1
1

s - 2
1

s - 2
1

s - 2
1

s - 2
1

s - 3
1

s - 3
1

s - 3
1

s - 3

\right]                            
\underbrace{}  \underbrace{}  

\bfL \bfa \bfg (s)

,

\left[                           

1
2
9
17
4
9
9
19
17
20
19
21
17
23
19
24
7
6
31
25

1
31
29

\right]                           
\underbrace{}  \underbrace{}  

\bfW 

,

\mathrm{d}\mathrm{e}\mathrm{f}
\Rightarrow 

\left\{         
\bfPhi (x)=\bfB \bfa \bfr \bfy x \odot \bfL \bfa \bfg (x),

\bfPsi (t)=\bfB \bfa \bfr \bfy t \odot \bfL \bfa \bfg (t),

\bfOmega (s)=\bfB \bfa \bfr \bfy s \odot \bfL \bfa \bfg (s).
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LOEWNER FRAMEWORK FOR PARAMETRIC DYNAMICAL SYSTEMS 763

With the above notation, we can express \bfH as the quotient of two rational functions:

\^\bfn (s, t, x) =
\sum 

\mathrm{r}\mathrm{o}\mathrm{w}\mathrm{s}

[\bfW \odot \bfPhi (x)\odot \bfPsi (t)\odot \bfOmega (s)]

\^\bfd (s, t, x) =
\sum 

\mathrm{r}\mathrm{o}\mathrm{w}\mathrm{s}

[\bfPhi (x)\odot \bfPsi (t)\odot \bfOmega (s)]

\right\} 
   
   
\Rightarrow \^\bfn (s, t, x)

\^\bfd (s, t, x)
=\bfH (s, t, x).

Consequently, KST for rational functions, as composition and superposition of one-
variable functions, takes the form

(6.2)

\^\bfn (s, t, x) =
\sum 

\mathrm{r}\mathrm{o}\mathrm{w}\mathrm{s}

exp [ log\bfW + log\bfPhi (x) + log\bfPsi (t) + log\bfOmega (s) ] ,

\^\bfd (s, t, x) =
\sum 

\mathrm{r}\mathrm{o}\mathrm{w}\mathrm{s}

exp [ log\bfPhi (x) + log\bfPsi (t) + log\bfOmega (s) ] .

\right\} 
   
   

Similarities and Differences between KST and the Results in (5.3) and (6.2).
(a) While KST refers to continuous functions defined on [0,1]n, (6.2) is concerned

with rational functions defined on \BbbC n.
(b) Expressions in (6.2) are valid in a particular basis, namely, the Lagrange

basis. Multiplication of functions in (6.2) is defined with respect to this
basis.

(c) The composition and superposition properties hold for the numerator and
denominator. This is important in our case because (6.2) preserves interpo-
lation conditions.

(d) The parameters needed are n= 3 Lagrange bases (one in each variable) and
the barycentric coefficients of the numerator and denominator. Note that in
KST, no explicit denominators are considered.

(e) Both KST and (6.2) accomplish the goal of replacing the computation of
multivariate functions by means of a series of computations involving single-
variable functions, KST for general continuous functions, and (6.2) for ratio-
nal functions. Notice also that (6.2) provides a different formulation of the
problem than KST.

(f) In addition to the Kolmogorov--Arnold neural nets (KANs) [33], our approach
provides a new application of KST to the modeling of multiparameter sys-
tems.

7. Data-Driven Multivariate Model Approximation. This section focuses on
the numerical aspects of constructing the realization from data measurements.

7.1. Two Algorithms. In what follows, we detail two algorithms. The first
is a direct method extending the algorithm proposed by the authors in [29], while
the second is an iterative method inspired by the p-AAA presented in [43]. These
procedures are outlined in Algorithms 7.1 and 7.2. For additional details, see also
[29, 43].

7.2. Discussion. The main difference between the two algorithms is that Algo-
rithm 7.1 is direct while Algorithm 7.2 is iterative. Indeed, in the former case, the
order is estimated at step 2, while the order is iteratively increased in the latter case
until a given accuracy is reached.

By analyzing Algorithm 7.1, the process first needs to estimate the rational order
along each variable ls. Then, we construct the interpolation set (3.3) (here, one may
shuffle data and interpolate different blocks). From this initial data set, the n-D
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764 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfseven .\bfone . Direct data-driven pROM construction.

\bfR \bfe \bfq \bfu \bfi \bfr \bfe : \bft \bfa \bfb n as in Table 2
1: Check that interpolation points are disjoint.

2: Compute dl =maxk \bfr \bfa \bfn \bfk \BbbL (k)
1 , the order along variable ls (k is the number of all

1D Loewner matrices when fixing variables \{ 1s, . . . , k - 1s, k+1s, . . . ,ns\} ).
3: Construct (3.3), a subselection P

(n)
c where (k1, k2, . . . , kn) = (d1, d2, . . . , dn) + 1,

and P
(n)
r , where (q1, q2, . . . , qn) gather the rest of the data.

4: Compute \bfc n, the n-D Loewner matrix null space, e.g., using Theorem 5.8.
5: Construct \BbbA \mathrm{L}\mathrm{a}\mathrm{g}, \BbbB \mathrm{L}\mathrm{a}\mathrm{g}, \bfGamma , and \bfDelta as in Result 4.14 with any left/right

separation.
6: Construct multivariate realization as in Theorem 2.8.
\bfE \bfn \bfs \bfu \bfr \bfe : \bfH (1s, . . . ,ns) =\bfC \bfPhi (1s, 2s, . . . ,ns) - 1\bfG interpolates \frakH (1s, 2s, . . . ,ns) along

P
(n)
c .

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfseven .\bftwo . Adaptive data-driven pROM construction.

\bfR \bfe \bfq \bfu \bfi \bfr \bfe : \bft \bfa \bfb n as in Table 2 and tolerance tol> 0
1: Check that interpolation points are disjoint.
2: \bfw \bfh \bfi \bfl \bfe error> tol \bfd \bfo 
3: Search the point indexes with maximal error (first iteration: pick any set).

4: Add points in P
(n)
c and put the remaining ones in P

(n)
r , to obtain (3.3).

5: Compute \bfc n, the n-D Loewner matrix null space, e.g., using Theorem 5.8.
6: Construct \BbbA \mathrm{L}\mathrm{a}\mathrm{g}, \BbbB \mathrm{L}\mathrm{a}\mathrm{g}, \bfGamma , and \bfDelta as in Result 4.14 with any left/right

separation.
7: Construct multivariate realization as in Theorem 2.8.

8: Evaluate error=max | | \widehat \bft \bfa \bfb n  - \bft \bfa \bfb n| | , where \widehat \bft \bfa \bfb n is the evaluation of \bfH (1s,
. . . ,ns) along the support points.

9: \bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
\bfE \bfn \bfs \bfu \bfr \bfe : \bfH (1s, . . . ,ns) =\bfC \bfPhi (1s, 2s, . . . ,ns) - 1\bfG interpolates \frakH (1s, 2s, . . . ,ns) along

P
(n)
c .

Loewner matrix and its null space may be computed using either the full (section 4)
or the 1-D recursive (section 5) approach. Based on the barycentric weights, the
realization is constructed using Result 4.14.

The difference between the two algorithms consists of the absence of the order
detection process in the second algorithm. Instead, it is replaced by an evaluation of
the model along the data set at each step until a tolerance is reached. Then, at each
iteration, one adds the support points set where the maximal error between the model
and the data occurs. This idea is originally exploited in the univariate case of AAA
in [39] and its parametric version from [43]; we similarly follow this greedy approach.

7.2.1. Dealing with Real Arithmetic. All computational steps have been pre-
sented using complex data. However, in applications, it is often desirable to deal with
real-valued functions in order to preserve the realness of the realization and to allow
the time-domain simulations of the differential-algebraic equations. To do so, some
assumptions and adaptations must be satisfied. Basically, interpolation points along
each variable must be either real or chosen to be closed under conjugations. For more
details on the exact procedure, we refer the reader to [29, section A.2].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2 4 6 8 10

10-15

10-10

10-5

100

5 10 15 20

10-15

10-10

10-5

100

Fig. 2 2-D simple synthetic model: Algorithm 7.1 normalized singular values of each 1-D (left) and
the 2-D (right) Loewner matrices.

7.2.2. Null Space Computation Remarks. To apply the proposed methods to a
broad range of real-life applications, we want to comment on the major computational
effort and hard point in the proposed process: the \bfn \bfu \bfl \bfl \bfs \bfp \bfa \bfc \bfe \bfc \bfo \bfm \bfp \bfu \bft \bfa \bft \bfi \bfo \bfn . Indeed,
in both the full n-D and the recursive 1-D cases, a null space must be computed.
Numerically, there exist multiple ways to compute it: SVD or QR decomposition, linear
resolution, etc. Without going into detail beyond the scope of this paper, many
tuning variables may be adjusted to improve accuracy. These elements are crucial to
the success of the proposed solution. In the next section, all null spaces have been
computed using the standard SVD routine of MATLAB. For more detail, refer to [24].

8. Numerical Experiments. The effectiveness of the numerical procedures
sketched in Algorithms 7.1 and 7.2 is illustrated in this section, through examples
involving multiple variables ranging from two to twenty. In what follows, the compu-
tations were performed on an Apple MacBook Air with 512 GB SSD and 16 GB RAM,
with an M1 processor. The software used was MATLAB 2023b.

8.1. A Simple Synthetic Parametric Model (2-D). Let us start with the simple
example used in [29, section 5.1] and [43, section 3.2.1], whose transfer function reads
\frakH (s, p) = 1

1+25(s+p)2 + 0.5
1+25(s - 0.5)2 + 0.1

p+25 . We use the same sampling setting as
in the above references. Along the s variable, 21 points are linearly spaced from
[ - 1,1]. For the direct method of Algorithm 7.1, we alternatively sample the grid as
1\lambda j1 = [ - 1, - 0.8, . . . ,1] and 1\mu i1 = [ - 0.9, - 0.7, . . . ,0.9]; then, along the p variable,
there are 21 linearly spaced points from [0,1]. For the direct method of Algorithm 7.1
we alternatively sample the grid as 2\lambda j2 = [0,0.1, . . . ,1] and 2\mu i2 = [0.05,0.15, . . . ,0.95].
First, we apply Algorithm 7.1 and obtain the single-variable singular value decay
reported in Figure 2 (left), suggesting approximation orders along (s, p) of (d1, d2) =
(4,3), being precisely that of the equation \frakH (s, p) above. Then, the 2-D Loewner
matrix is constructed and its associated singular values are reported in Figure 2
(right), leading to the full null space and barycentric weights (results follow next).

Next, we investigate the behavior of Algorithm 7.2. In Table 5, we report the
iterations of this algorithm when computing the null space with either the full 2-D
version (Table 5(a)) or the recursive 1-D version (Table 5(b)). In both cases, the
same order is recovered, i.e., (4,3). Even if the selected interpolation points are
slightly different, the final error is below the chosen tolerance, i.e., tol=10 - 6. By now
comparing the flop complexity, the benefit of the proposed recursive 1-D approach

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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766 A. C. ANTOULAS, ION VICTOR GOSEA, AND CHARLES POUSSOT-VASSAL

Table 5 2-D simple model iterations with different null space computation methods.

(a) Algorithm 7.2 (full Ln)

Iter. 1λj1
2λj2 (k1, k2) flop

1 0 0 (1, 1) 13

2 −1 (2, 1) 23

3 −0.9 0.9 (3, 2) 63

4 −0.1 0.2 (4, 3) 123

5 0.6 1 (5, 4) 203

(b) Algorithm 7.2 (recursive L1)

1λj1
2λj2 (k1, k2) flop

0 0 (1, 1) 2

−1 (2, 1) 10

0.1 0.05 (3, 2) 51

−0.9 0.75 (4, 3) 172

0.7 0.15 (5, 4) 445

-1 -0.5 0 0.5 1

-25

-20

-15

-10

-5

0

-1 -0.5 0 0.5 1

-300

-250

-200

-150

-100

-50

0

Fig. 3 2-D simple model: Frequency responses (left) and errors (right); original vs. Algorithm 7.1
(black lines) and Algorithm 7.2 (orange dots and dashed lines).

with respect to the 2-D approach is clearly emphasized, even for such a simple setup.
Indeed, while the latter is of = 1+23 +63 +123 +203 = 9,953 flop, the former leads
to 2+10+51+172+445= 680 flop, which is 14 times smaller. The mismatch in the
three configurations over all the sampling points of the \bft \bfa \bfb 2 data is close to machine
precision for all configurations.

Finally, to conclude this first example, Figure 3 reports the responses (left) and
mismatch (right) along s for different values of p, for the original model and the
obtained models with Algorithms 7.1 and 7.2 (with recursive 1-D null space).

8.2. Flutter (3-D). This numerical example is extracted from industrial data and
considers a mixed model/data configuration. It represents the flutter phenomena for
flexible aircraft as detailed in [18].8 This model can be described as s2M(m)x(s) +
sB(m)x(s) +K(m)x(s) - G(s, v) = u(s), where M(m),B(m),K(m) \in \BbbR n\times n are the
mass, damping, and stiffness matrices, all dependent on the aircraft mass m \in \BbbR +

(n \approx 100). These matrices are constant for a given flight point (but vary for a mass
configuration). Then, the generalized aeroelastic forces G(s, v) \in \BbbC n\times n describe the
aeroelastic forces exciting the structural dynamics. This G(s, v) is known only at a
few sampled frequencies and some true airspeed, i.e., G(\imath \omega i, vj), where i= 1, . . . ,150
and j = 1, . . . ,10. Note that these values are obtained through dedicated high-fidelity
numerical solvers. The sampling setup is as follows. Along the s variable, 1\lambda j1 are
150 logarithmically spaced points between \imath [10,35] and 1\mu i1 =  - 1\lambda j1 . Along the v

8\mathrm{W}\mathrm{e} \mathrm{a}\mathrm{c}\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{w}\mathrm{l}\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e} \mathrm{P}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{e} \mathrm{V}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{n} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{t}\mathrm{h}\mathrm{e} (\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}fi\mathrm{e}\mathrm{d}) \mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}.
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Fig. 4 3-D flutter model: 3-D Loewner matrix singular values (left) and frequency responses (right).
Original (solid colored) and pROM (black dotted).

variable, 2\lambda j2 are five linearly spaced points between [4.77,5.21] \cdot 103 and 2\mu i2 and
five linearly spaced points between [4.82,5.27] \cdot 103. Along the m variable, 3\lambda j3 are
five linearly spaced points between [1.52,1.66] \cdot 103 and 2\mu i2 and five linearly spaced
points between [1.54,1.68] \cdot 103.

Here, the data is a 3-D tensor \bft \bfa \bfb 3 \in \BbbC 300\times 10\times 10. By applying Algorithm 7.1,
an approximation order (14,1,1) is reasonable. The singular value decay of the 3-D
Loewner matrix is reported in Figure 4 (left). Then, the original and pROM frequency
responses are shown in Figure 4 (right), resulting in an accurate model.

One relevant point of the proposed Loewner framework, nicely illustrated in this
application, is its ability to construct a realization of a pROM based on a hybrid
data set, mixing frequency-domain data and matrices. By connecting this problem
to NEPs, the parametric rational approximation allows us to estimate the eigenvalue
trajectories; we refer to [42, 47, 18] for details and industrial applications.

8.3. A Multivariate Function with a High Number of Variables (20-D). To
conclude and to numerically demonstrate the scalability features of our process, let
us consider the 20-variable rational model \frakH (1s, . . . , 20s) =

3 \cdot 1s3 + 4 \cdot 8s+ 12s+ 13s \cdot 14s+ 15s
1s10 + 2s2 \cdot 3s+ 4s+ 5s+ 6s+ 7s \cdot 8s+ 9s \cdot 10s \cdot 11s+ 13s+ 13s3 \cdot \pi + 17s+ 18s \cdot 19s - 20s

,

with a complexity of (10,2,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1). By applying Algo-
rithm 7.1 with the recursive 1-D null space construction, the barycentric coefficients
\bfc n \in \BbbC 17301504 are obtained with a computational complexity of 149,226,836 flop,
computed in 4 hours. As explained in the Supplementary Material, this vector allows
the reconstruction of the original model with an absolute error \approx 10 - 7 for a random
parameter selection. Applying the full n-D Loewner version instead would theoret-
ically require the construction of a Loewner matrix of dimension N = 17,301,504,
with a null space computation costing about 5.18 \cdot 1021 flop, which is prohibitive
on a standard computer. Storing such an N \times N n-D Loewner matrix would require
4,356 TB in double precision, while the 1-D approach needs 1.89 KB only (in the worst
case).

9. Conclusions. We have investigated the Loewner framework for linear mul-
tivariate/parametric systems and developed a complete methodology (and two al-
gorithms) for data-driven n-variable pROM realization construction in the (n-D)
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Loewner framework. We have also shown the relationship between n-D Loewner and
Sylvester equations. Then, as the numerical complexity and matrix storage explode
with the number of data points and variables, we introduced a recursive 1-D null space
procedure, equivalent to the full n-D procedure. This process allows the decoupling
of the variables involved and thus provides the effect of drastically reducing (i) the
computational complexity and (ii) the matrix storage needs. This becomes a major
step toward taming the curse of dimensionality. In addition, we have established a
connection between the decoupling result and the Kolmogorov superposition theorem
(KST). We have applied these results to numerical examples throughout the paper,
demonstrating their effectiveness. Last, we claim that the contributions presented
are not limited to the system dynamics and rational approximation fields, but may
also apply to many scientific computing areas, including tensor approximation and
nonlinear eigenvalue problems, for which dimensionality remains an issue.

Supplementary Material and Software Availability. Additional material to sup-
plement the findings reported in this paper is available at

https://sites.google.com/site/charlespoussotvassal/nd loew tcod

and in [6] (where over 30 test cases are analyzed and various methods are compared in
detail). Furthermore, the MATLAB code used to generate the figures and illustrations
corresponding to the numerical results presented in this paper is available at

https://github.com/cpoussot/mLF
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