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Abstract. The Loewner framework is an interpolatory approach for the approximation of linear and
nonlinear systems. The purpose here is to extend this framework to linear parametric sys-
tems with an arbitrary number n of parameters. To achieve this, a new generalized mul-
tivariate rational function realization is proposed. We then introduce the n-dimensional
multivariate Loewner matrices and show that they can be computed by solving a set
of coupled Sylvester equations. The null space of these Loewner matrices allows the con-
struction of multivariate rational functions in barycentric form. The principal result of this
work is to show how the null space of n-dimensional Loewner matrices can be computed
using a sequence of one-dimensional Loewner matrices. Thus, a decoupling of the vari-
ables is achieved, which leads to a drastic reduction of the computational burden. Equally
importantly, this burden is alleviated by avoiding the explicit construction of large-scale
n-dimensional Loewner matrices of size N X N. The proposed methodology achieves the
decoupling of variables, leading (i) to a reduction in complexity from O(N?3) to below
O(N'5) when n > 5 and (ii) to memory storage bounded by the largest variable dimen-
sion rather than their product, thus taming the curse of dimensionality and making the
solution scalable to very large data sets. This decoupling of the variables leads to a result
similar to the Kolmogorov superposition theorem for rational functions. Thus, making
use of barycentric representations, every multivariate rational function can be computed
using the composition and superposition of single-variable functions. Finally, we suggest
two algorithms (one direct and one iterative) to construct, directly from data, multivariate
(or parametric) realizations ensuring (approximate) interpolation. Numerical examples
highlight the effectiveness and scalability of the method.
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I. Introduction. First, the context, motivation, and problem statement are
presented. Since it is the principal mathematical tool of the developed method, a
brief historical review of Loewner matrix-driven methods is then given. Finally, the
contributions and organization of the paper are listed.

l1.1. Motivation and Context: Nonintrusive Data-Driven Model Construc-
tion. Rational model approximation addresses the problem of constructing a reduced-
order model that accurately captures the behavior of a potentially large-scale model
depending on several variables. In the context of dynamical systems governed by
differential and algebraic equations, the multivariate nature comes mainly from the
parametric dependence of the underlying system or model. These parameters account
for physical characteristics such as mass, length, or material properties (in mechanical
systems), flow velocity, temperature (in fluid cases), chemical properties (in biological
systems), etc. In engineering applications, the parameters are embedded within the
model as tuning variables for the output of interest. The challenges and motivation for
dynamical multivariate/parametric reduced order model (pROM) construction stem
from three inevitable facts about modern computing and engineers’ concerns:

(i) First, accurate modeling often leads to large-scale dynamical systems with
complex dynamics for which simulation times and data storage needs become
prohibitive, or at least impractical for engineers and practitioners.

(ii) Second, the explicit mathematical model describing the underlying phenom-
ena may not always be accessible, while input-output data may be measured
either from a computer-based (black-box) simulator or directly from a phys-
ical experiment; as a consequence, the internal variables of the dynamical
phenomena are usually too numerous to be stored or simply inaccessible.

(iii) Third, a potentially large number of parameters may be necessary for the
following steps of the process.

Complex and accurate parametric models are often needed to perform simulations,
forecasting, parametric uncertainty propagation, and optimization in a broad sense.
The goals are to better understand and analyze the physics, to tune coefficients, to
optimize the system, or to construct parameterized control laws. As these objectives
often require a multiquery model-based optimization process, the complexity dictates
the accuracy, scalability, and applicability of the approach, and it is relevant to seek
a pROM or multivariate surrogate with low complexity.

1.2. Literature Overview on Reduced-Order Modeling. In the last decade,
considerable effort has been dedicated to devising reliable and accurate model reduc-
tion (intrusive) and reduced-order modeling (ROM) (nonintrusive) methods, synthe-
sized in a multitude of approaches developed in recent years [3, 10, 26, 5, 11, 12].
For the class of parametric systems, the comprehensive review contribution in [13]
provides an exhaustive account of projection-based methods from the 2000s up to the
middle of the 2010s.
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Additionally, relatively new approaches use time-domain snapshot data to com-
pute reduced-order models, such as operator inference (OpInf) [40] and dynamic mode
decomposition (DMD) [45]. Extensions of such methods to parameterized dynamical
systems have recently been proposed, for Opluf in [49, 36] and for DMD in [2, 44].

For the class of frequency-domain methods, we concentrate on interpolation-based
methods. For other classes of projection-based methods, we refer the reader to the
survey [13]. As explained in this review paper, reduced-order models for parametric
systems are typically computed by employing projection, using either a local or a
global basis for matrix or transfer function interpolation. Relevant contributions
in past years include [1, 19, 50, 22]. Additionally, (quasi-)optimal approaches were
proposed in [9, 28, 37] that try to impose optimality in certain norms, e.g., the Ho® Lo
norm.

Nonintrusive methods based on interpolation or approximate matching (using
least squares fitting) of transfer function measurements (of the underlying param-
eterized rational transfer function) have somewhat proliferated in recent decades,
with the following prominent contributions. First, extensions of the Loewner Frame-
work (LF) to multivariate rational approximation by interpolation [7, 29, 47] together
with the AAA (Adaptive Antoulas—Anderson) algorithm for multivariate functions
[43, 21]. Second, extensions of the vector-fitting framework to multivariate rational
approximation, including the generalized Sanathanan—Koerner iteration in [15, 51];
these works are mostly concerned with imposing stability and passivity guarantees
for macro model generation in the field of electronics.

1.3. Connection with the Kolmogorov Superposition Theorem. Problem 119
in the book of Polya and Szego [41] asks the following question: Are there actually
functions of three variables? Alternatively, is it possible to use compositions of func-
tions of two or fewer variables to express any function of three variables? This question
is related to Hilbert’s 13th problem [27]: are there any genuinely continuous multivari-
ate functions? Hilbert, in fact, conjectured the existence of a three-variable continuous
function that cannot be expressed in terms of the composition and addition of two-
variable continuous functions. For a recent overview of this problem, see [38]. The
Kolmogorov superposition theorem (KST) answers this question negatively. It shows
that continuous functions of several variables can be expressed as the composition
and superposition of functions of one variable. Thus, there are no true functions of
three variables. The present contribution presents connections between the Loewner
framework and the KST restricted to rational functions. As a by-product, taming of
the curse of dimensionality (C-0-D), in terms of computational complexity, storage,
and, last but not least, numerical accuracy, is achieved.

1.4. Connection to Other Fields. Tensors are generalizations of vectors and
matrices in multiple dimensions. Applications include, among others, the fields of
signal processing (e.g., array processing), scientific computing (e.g., multivariate func-
tion discretization), and, more recently, quantum computing (e.g., simulation of quan-
tum many-body problems). We refer the reader to the survey [31] for additional
information and a detailed discussion. However, working explicitly with tensors, es-
pecially those of higher dimensions, is not a trivial task. The number of elements
in a tensor increases exponentially with the number of dimensions, as do the com-
putational/memory requirements. Such exponential dependence, together with the
challenges that arise from it, are connected to the C-o-D.

Tensor decompositions are particularly important and relevant for several stren-
uous computational tasks since they can potentially alleviate the C-o-D that occurs
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when working with high-dimensional tensors, as is explained in [46]. Such a decompo-
sition can accurately represent and substitute the tensor, i.e., one may use it instead
of explicitly using the original tensor itself. More details and an extensive literature
survey of low-rank tensor approximation techniques, including canonical polyadic de-
composition, Tucker decomposition, low multilinear rank approximation, and tensor
trains and networks, can be found in [23].

Tensorization and Loewner matrices were recently connected in the contribution
[17]. There, a collection of one-dimensional (1-D) (standard) Loewner matrices is
reshaped as a three-dimensional (3-D) tensor, to which the block term decomposition
(BTD) is applied; the procedure is named “Loewnerization.” The application of
interest is blind signal separation.

Nonlinear eigenvalue problems (NEPs) can be viewed as a generalization of the
(ordinary) eigenvalue problem to equations that depend nonlinearly on the parame-
ters. Linearization techniques allow the reformulation of any polynomial eigenvalue
problem as a larger linear eigenvalue problem and then the application of established
(classical) algorithms to solve it. Other linearizations involve rational approximation,
e.g., [32, 25], which involve the usage of the rational Krylov or the AAA algorithms,
together with [16], which uses the Loewner and Hankel frameworks in the context of
contour integrals.

1.5. Problem Statement. A linear-in-state dynamical system parameterized in

terms of the parameters of S = [?s,...,"s]T C C"™! is characterized in state-space
representation by the equations
(1.1) E(S)x(t;S) =A(S)x(t; S) + B(S)u(t), y(t;5) = S)x(4S),

where x(t; S) refers to the derivative of x(t;S) € RM with respect to the time variable
t. Additionally, the n, control inputs are collected in the vector u(t) € R™, while
the n, outputs are observed in the vector y(¢;S) € R"™. Finally, the dimensions
of the system matrices appearing in the state-space realization (1.1) are as follows:
E(S),A(S) € RM*M 5(8) e RM*™u | ¢(S) € R™*M | For simplicity of exposition,
we consider only the single-input and single-output (SISO) scenario in what follows,
i.e., ny, =ny =1. The extension to multi-input multioutput (MIMO) systems will be
the topic of future research, e.g., based on the formulation exposed in [47]. In what
follows, particular attention is paid to the exposition of a solution that tames the
C-0-D.

Remark 1.1 (taming the C-0-D). Throughout this work, the expression “taming
the C-0-D” will be used to emphasize the decoupling of variables, which drastically
reduces both the complexity of computation of barycentric weights in terms of flop,
and the memory storage requirements, while at the same time improving numerical
accuracy.

Transforming the differential equation in (1.1) using the unilateral Laplace trans-
form, the time variable ¢ becomes 's, and solving for the transformed state vari-
able, we have X(1s;8) = [s€(S) — A(S)]71B(S)4U('s). Similarly, transforming the
second equation in (1.1) we obtain Y('s;S) = €(S)X('s;S). These equations yield
D(15;8) =€(S)[*sE(S) —2A(S)]71B(S)8h(1s). The transfer function of the parametric
linear time-invariant (pLTI) system in (1.1) is given by

(1.2) H(s,%s,...,"s) = €(S) [1s€(S) —A(S)] T B(S) e C.

This is a multivariate rational function involving n variables 's € C, I=1,...,n.
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We denote the complexity of each variable 's with the value d; (the highest degree
in which the variable occurs in both polynomials describing the rational function
shown above) and say that $(1s,?s,...,"s) in (1.2) is of complexity (dy,ds,...,d,).

As we are interested in the nonintrusive data-driven setup, let us now consider that
the function in (1.2) is not explicitly known. Instead, one has access to evaluations
at (support or interpolatory) points 1)\j1,2)\j2,...,”)\jn along 's,?s,..."s, leading to
measurements w;j, j, ., for jj=1,...,k;, where [=1,...,n.

Under some assumptions detailed in what follows, we seek a reduced multivariate
rational model, pROM, H, given as

(1.3) H('s,?s,...,"s) =C®('s,%s,...,"s) 'G € C,

where the vectors CT,G € C™, and square matrix ® € C™*™ define a generalized
realization, detailed later. We denote this realization with the triple (C, ®, G), being
the output, the inverse of the resolvent, and the input operators.

In what follows, we concentrate on continuous-time dynamical systems. There-
fore, the first variable 's will be associated with the dynamic Laplace variable, while
2s,...,"s represent nondynamic parametric variables (in most cases they will be
real valued, although a complex form is also possible). Note that a similar discrete
sampled-time model can be obtained using the z-transform (see, e.g., [48]). In addi-
tion, one might also notice that (1.2) may be any multivariate real- or complex-valued
function.

1.6. Historical Notes. The Loewner matrix was introduced by Karl Lowner in
his seminal paper published nine decades ago [34] for the study of matrix convexity. It
has been further studied and used in multiple works dealing with data-driven rational
function approximation with applications in system theory in general. In [4], the
Loewner matrix constructed from data is used to compute the barycentric coefficients
to obtain the rational approximating function in the Lagrange basis. This is also
known as the one-sided Loewner framework. One major update was proposed in 2007
by [35], which introduced the two-sided Loewner framework, constructing a rational
model with minimal McMillan degree and also constructing a realization with minimal
order, directly from the data. [8] provides a comprehensive review of the case of single-
variable linear systems, gathering most of the results up to 2017. In [7], the one-sided
framework was extended to two variables/parameters, and its corresponding Lagrange
basis realization was derived. Later, in [29], the multiparameter Loewner framework
(mpLF) was presented together with (for up to three parameters) the barycentric
form, but without the description of a realization. Recently, tutorial contributions
for the Loewner framework, with its extensions and applications, were proposed in
[8, 30]. [20] provides a comprehensive overview including parametric and nonlinear
Loewner extensions, practical applications, and test cases from aerospace engineering
and fluid dynamics.

The AAA algorithm in [39] represents an iterative and adaptive version of the
method in [4] that makes use of the barycentric representation of rational interpolants.
For more details on barycentric forms and connections to Lagrange interpolation, we
refer the reader to [14]. In [43], the parametric AAA (p-AAA) algorithm was intro-
duced. This extends the original AAA formulation of [39] to multivariate problems
appearing in the modeling of parametric dynamical systems. The p-AAA can be
viewed as an adaptation of the mpLF, in that it also uses multidimensional Loewner
matrices and computes barycentric forms of the fitted rational functions. The p-AAA
algorithm chooses the interpolation points in a greedy manner and enriches the La-
grange bases until an approximation (with desired accuracy) is reached.
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In addition, multiple application-oriented research papers utilizing the Loewner
framework have been suggested, as well as multiple adaptations of the original version.
It is worth noting that the multivariate versions have been poorly studied, and when
they were studied, they were limited to three variables. In this paper, we address
these two points.

1.7. Contribution and Paper Organization. Our goal is to provide a complete
and scalable solution to the data-driven multivariate reduced-order model construc-
tion. The results provided in [7, 29] are extended. The main result consists of the
decoupling of variables, thus taming the C-o-D. The contribution is fivefold:
(i) We propose a multivariate generalized realization that allows the descrip-
tion with state-space form (with limited complexity) of any multivariate ra-
tional function (section 2 and Theorem 2.8).

(ii) The n-dimensional (n-D) multivariate Loewner matrix is introduced and is
shown to be the solution of a set of coupled Sylvester equations (section 4
and Theorem 4.13).

(iii) As the dimension N of the n-D Loewner matrix exponentially increases with
the amount of data (i.e., variables and associated degrees), we demonstrate
that the associated null space can be obtained using a collection of 1-D
Loewner matrices; this leads to the reduction of computational complex-
ity from O(N3) to less than O(N'5) when n > 5, to a drastic reduction in
storage requirements (section 5 and Theorems 5.8, 5.10, and 5.13), and to
increased numerical accuracy.

(iv) A connection with Hilbert’s 13th problem and the KST is established (first

with Theorem 5.9 and then in section 6).
(v) Two data-driven multivariate generalized model construction algorithms
(section 7 and Algorithms 7.1 and 7.2) are provided.

Among these contributions, items (i), (iii), and (iv) are the main theoretical re-
sults toward taming the C-o-D for data-driven multivariate function and realization
construction. More specifically, item (i) provides a new realization structure applica-
ble to any n-D rational function expressed in the Lagrange basis, where the complexity
(e.g., dimension of matrices) is controlled. Ttem (iii) shifts the problem of null space
computation of a large-scale n-D Loewner matrix to the null space computation of
a set of small-scale 1-D Loewner matrices, leading to the very same Lagrange coeffi-
cients required in the pROM construction, but with much lower computational effort.
Finally, item (iv) links this result to the KST by explicitly detailing the decoupling
of variables.

Remark 1.2 (connection to tensors). Stepping back from the dynamical systems
perspective, we also note that the proposed approach provides a candidate solution to
tensor approximation problems. Indeed, we approximate any problem characterized
by tensorized data sets by means of a rational function. This is done by taming
the C-0-D as pointed out in (iii). Established tensor decompositions may provide a
bridge to the philosophy of our proposed method, which requires breaking down the
complex problem by eliminating one dimension at every step.

Remark 1.3 (connections to NEPs). The realization proposed addresses the prob-
lem of linearization in the context of NEPs. Specifically, our realization achieves
multilinearizations of the associated NEPs. Furthermore, in the bivariate case, if
we split the two variables, we achieve a linearization. In the case of more than two
variables, if we arrange them as the frequency variable s in the first group (or right
variable) and all the other variables (parameters) in the second group (left variables),

we achieve a linearization in !s.
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The remainder of the paper is organized as follows. Section 2 provides the start-
ing point and initial seed by introducing a generalized multivariate rational functions
realization framework. From this form, a specific structure appropriate to the prob-
lem treated here is chosen. Since data are the main ingredient of the data-driven
framework used, section 3 introduces the data notations in a general n-variable case.
Then, in section 4, the data-based n-D Loewner matrices are defined and a connection
with cascaded Sylvester equations is made. The relationships with the multivariate
barycentric rational form (using a Lagrange basis), as well as the multivariate real-
ization, are also established. In section 5, the numerical complexity induced by the
n-D null space computation is reduced thanks to the decomposition into a recursive
set of 1-D Loewner matrix null space computations instead. This decomposition al-
lows a drastic reduction of the complexity, thus taming the C-o-D. Finally, section
6 details the connection with the KST. Based on all these contributions, two algo-
rithms are sketched in section 7 that indicate complete procedures for the construction
of a nonintrusive multivariate dynamical model realization from input-output data.
Numerical examples that illustrate the effectiveness of the proposed process are de-
scribed in section 8. Finally, section 9 concludes the paper and provides an outlook
on addressing open issues and future research problems.

2. Realizations of Multivariate Rational Functions. The starting point of this
study is the new generalized realization for multivariate rational functions. This leads
to the construction of a realization involving internal variable equations from an n-
variable transfer function in the form (1.2). This is expressed in the Lagrange basis.
After some preliminaries, the result is stated in Theorem 2.8. This stands as the first
major contribution of this paper.

2.1. Preliminaries. First, we derive the pseudocompanion Lagrange basis, then
we provide the multirow and multicolumn indices, the coefficient matrices proposi-
tions, and, finally, results on the characteristic polynomial.

2.1.1. Pseudocompanion Lagrange Matrix. Consider a rational function $ in
n variables, namely, ’s, each of degree d; (j=1,...,n), as in (1.2). We will consider
the Lagrange basis of polynomials. The Lagrange pseudocompanion matriz considered
here is denoted /X#8 and is defined as follows.

DEFINITION 2.1. Let the Lagrange monomials in the variable 7s be denoted as
Ix; =7s—7\;, where i =1,...,n; and ?’\; € C. Associated with the jth variable, we
define the pseudocompanion form matrixz in the Lagrange basis as

(2.1)

ix, —Jxy 0 0
. ix, 0 —Jxg 0
i La XLag(]S) . . . . . n;Xn;rj
RS e | T : - : : eCm*mifs,
Ixy 0 0 — %y,
I g g e,
with wvalues Jq;, i = 1,...,nj, chosen such that ixtee s unimodular, i.e.,

det(IXLa8) = 1.2

L An exhaustive account of numerical examples and results, together with all necessary data and
codes to reproduce the numerics, can be found in the links to the Supplementary Material at the
end of this paper.

20ne may chose 1/9q; =I;(s; —IAg) for k=1,...,n;.
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Following the general interpolation framework, the /s (j = 1,...,n) variables of
$ (1.2) are split into left and right variables, or equivalently into row and column
variables. For simplicity of exposition (and by permutation if necessary), we assume
that !s,...,*s are the column (right) variables and ¥*1s,...,"s are the row (left)
variables (0 < k <n, k € N). Based on this data, we define two Kronecker products of
the associated pseudocompanion matrices.

k k+1

DEFINITION 2.2. Consider the column 's,....Fs and row 8,...,"s variables;
we define the Kronecker products of the pseudocompanion matrices (2.1) as

I‘Lag — 1xLag®2xLag®.“®kaagECHXK[ls’”.’kSL
(22) Alag  _  ktixlag ® kt2xles ... g nxlesg ¢ (CfX@[k—&-l& o 7n8]7
where K = H?zl n; and £ = H?=k+1 n;. These matrices are square and unimodular.
For brevity, we will now denote them as I' and A.

2.1.2. Multirow/Multicolumn Indices and the Coefficient Matrices. We will
show how to set up the matrices containing the coefficients of the numerator and
denominator polynomials. The key to this goal is an appropriate definition of row/
column multi-indices.

DEFINITION 2.3.  Fach column of T' and each column of A defines a unique
multi-index 1,, J,. We will refer to these indices as row and column multi-indices
(the latter because the A matriz enters in transposed form), as follows:

Io=1[i it id] =110 05, s gk s a=1,....0,r=1,... k.

Each multi-index I, (J.) contains the indices of the Lagrange monomials involved in
the qth (rth) column of A (T'), respectively.

Remark 2.4. The ordering of these multi-indices is imposed by the ordering of the
Kronecker products in Definition 2.2. More details are available in the examples.

2.1.3. The Coefficient Matrices. We consider the rational function H as
k1 k2 ke C1.92,-dn Wi1,42,--dn
(2.3)  H('s,%s,...."s) = =1 2= 2=t [T Y (ahy) (rama)
. ’ Yy - k1 ko kn Ci1vdmarns )
Z‘ ; Z, 1,325--50n
J1=14ajo=1 Jn=1 (15—1Aj1)(25—2)\j2)--~("s—7")\jn)

where ¢;, j,,...;, € C are the barycentric weights and w;, ;, . ;. € C the data evalu-
ated at the combination of interpolation (support) points in {*A;,,%\;,,...,™\;, }, or,
equivalently, following Definition 2.3, as

ZE Z){ BIQ,JT
g=122r=1 T, c;, Thye, (*5—"X;0 ) (P5="2;,)

H('s,?s,...,"s) =

YDHD P e '
g=122r=1 T, c;, Thhes, (*5—"A;0) (P5="2;,)

We now define matrices of size ¢ X k:

an,g QL o GILJ, Bri,n Bru - Br,
(2.4) e 0412.”]1 Oé[2.)J2 0412.7‘]N pLer _ Blz.,h ﬁfz.nfz ﬁ12.)«]n
1,0, QI Jd, "0 Qo g, ﬂfe’-h Ble,b ﬁI[.A,JN
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Notice that A*® contains the appropriately arranged barycentric weights of the de-
nominator of H (i.e., the entries of a vector in the null space of the associated Loewner
matrix), while B'*8, contains the barycentric weights of the numerator, i.e., the prod-
uct of the denominator barycentric weights with the corresponding values of H.

2.1.4. Characteristic Polynomial in the Barycentric Representation. We con-
sider the single-variable polynomial p(s) of degree (at most) n in the variable s. For
a barycentric or Lagrange representation, the following holds (by expanding the de-
terminant of M with respect to the last row).

PROPOSITION 2.5. Given the polynomial p(s) of degree less than or equal to
n, expressed in a Lagrange basis as p(s) = ﬂ'(% + -4 %), where ™ = H?Ill X,

it follows that det(M) = Z?:Jrll i [ [z x; = p(s), where M is the pseudocompanion
form matriz as in Definition 2.1, where ’x; is replaced by x; and ’q, by ;.

Next, following Proposition 2.5, we consider two-variable polynomials p(s,t) of
degree (at most) m, m in the variables s, t, respectively. Let x;(s) =s—s;, s; € C,
i=1,...,n+1, and y;(t) =t —t;, t; € C, 5 = 1,...,m + 1, be the monomials
constituting a Lagrange basis for two-variable polynomials of degree less than or
equal to n, m, respectively. In other words,

aq.1 a1 m+1 Qn41,1 Qp41,m+1
p(s,t) :W[_A,_ e oy B L T
X1y1 X1Ym+1 Xn+1¥Y1 Xn+1Ym+1

which can be rewritten by highlighting the matrix form of (2.4) as

1
11 g2 a1 m+1 yl]
( ) 1 1 a2 1 a2 2 T A2 m+41 v
p3>t =Ty e . . . . )
X1 X2 Xn+1 :
1
a a e a
n+1,1 n+1,2 n+1,m+1 Yot1

1 1 . . .
where ™= H”+ X; H;njl y;. Consider next the pseudocompanion form matrices,

(2.5) i

x1 —x2 0 - 0 yi —y2 0 - 0
x1 0 —x3 - 0 yi 0 —yz -- 0
S=1 : : . : , T= : R : ;
x1 0 o 0 —Xpq yi 0 o 0 —ymip1
€1 € o €n €ngl G G o G Gett
ECHDX(n41) [4] €CtmH+DX (m+1)[¢]

where the constants ¢; and (; are chosen such that det(S) =1 and det(T) = 1.3 The
coefficients «; ; are arranged in the form of a matrix A& € ClrtDx(m+D) ag in (2.4),

a1 Q.2 e a1,m+1
a a DY a
ALag . 2,1 2,2 2,m+1
- )
Qn+1,1 On+41,2 e On+1,m+1

30ne may chose 1/¢; =TIj2;(s; —s5) and 1/ =T0;44(t; — t5) for i,5=1,...,n,m.
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or in a vectorized version (taken rowwise) vec (A#€) € C** such that vec (A"*8) =
[@11,01,25- 01 mt1 | = | Qng1,15 -+ 5 Qnb1,m1], Wwhere k= (n+1)(m+1). Consider
also the Kronecker product S ® T, which turns out to be a square polynomial matrix
of size k. We form two matrices

(S®T)(1:K)_1?:) S(li’l’L—l,Z) Onfl,mfl

(26> M, = vec (ALag> ‘| and M, = |: ALag T(l:m—l, I)T

GC"'XR[S}t] Ec(ni»rn—l)x(n«#mfl)[s7t]

PROPOSITION 2.6. The determinants of My and Msy are both equal to p(s,t).

Proof. The first expression follows by expanding the determinant of M; with
respect to the last row. For the validity of the second expression, see Theorem 2.8. O

Remark 2.7 (C-0-D). This result shows that by splitting the variables into left
and right variables, the C-o-D is alleviated, as in the former case the dimension is
(n+1)(m+ 1), while in the latter the dimension is n+m — 1.

2.2. The Multivariate Realization in the Lagrange Basis.

2.2.1. Main Result. The result provided in Theorem 2.8 yields a systematic way
to construct a realization as in (1.3) from a transfer function H given in a barycentric
/ Lagrange form (2.3).

THEOREM 2.8. Given quantities in Definition 2.1 and Definition 2.2, a 20+xk—1=
mth-order realization (C, ®, Q) of the multivariate function $ in (1.2), in barycentric
form (2.3), satisfying H('s,...,"s) = C®(!s,...,"s)"1G, is given by

(2.7)

RO l’i),; s ,;,0511! .
B(ls,...,"s) = ALag PAL:0—=1,9)T 1 Ogy e C™ ™M, ..., "]
777@fa§7777770};771777\7h}77
[ Ox-11
G=| A(,)T | eC™!and C=[ 01 0141 —e; |€C™,
04,1

where e, denotes the rth unit vector (i.e., all entries are zero except the last one,
equal to 1) and where A& BL2& ¢ C* are appropriately chosen according to the
pseudocompanion basis used.

Proof. See subsection 2.2.2. 0

Remark 2.9 (matrix realization). From Theorem 2.8 and following (1.1)’s nota-
tions, it follows that ®(1s,?s,...,"s) =1s€(S) — A(S), G =B(S), and C = €(S).

COROLLARY 2.10. The realization defined by the tuple (C,®,G) has dimension
m=20+k —1, and it is both R-controllable and R-observable, i.e.,

(2.8) [ ®('s,...,"s) G | and [@(157?.,”5) }

have full rank m for all is € C. Furthermore, ® is a polynomial matriz in the variables
Js, while C and G are constant.

Proof. The result follows by noticing that the expressions in question have full
rank for all 7s € C because of the unimodularity of A and T'. 0
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2.2.2. Proof of Theorem 2.8.

The Numerator of Redlization (2.7). First, partition ® = |- gu % (i)of -|, where the
21 | Poo
sizes of the four entries are (k+£¢—1)x (k+£—1), (k+0—1) x{, L x (k+L£—1),
{xt, G= [ G1 }, and C = [01 ,+s—1 —eﬂ. It follows that
04,1 N
C.
(2.9) H=Cd 'G= g = Cy By 0y 1] G

The last expression can be expressed explicitly as

Cy .
[ ud } where « has size ¢—1
*

-
ry

—_—
[016-1 — e/ ] AT [B& | 0g_1]

—1
Cs 2P P21

{1"(1:/@—1,1:&); O o1 }1{ 0r 11 ]

The expressions for rz— and c, are a consequence of Proposition 2.11. It follows that
n =r/ B¥&c,. Interchanging A and B#¢ in (2.7) amounts to interchanging n
and d in H (2.9); the expression for the denominator is d=r] Al?c, .

PROPOSITION 2.11. (a) The last row of A~ is

. 1 1 oo 1
r, = @, — .
4 ktly, 7007 k+1xnk+1+1 ny, "Xyt
Therefore, rz— -BY& js a matriz of size 1 x k. (b) The last column of s
1 1" o o] 1 77
Ch=|—. .., — @ ey | -
" Ix; 1Xm-qu le ank+1

Remark 2.12. The possibility of splitting the variables into left and right variables
allows for the choosing of a splitting that minimizes m. For instance, if we have four
variables with degrees (2,2,1,1), splitting the variables into (2,1)—(2, 1) yields m =17,
while the splitting (2)—(2,1,1) (i.e., one column and three rows) yields m = 26.

2.3. Comments. In Theorem 2.8, both matrices AL28 BL28 ¢ C*™** are directly
related to the pseudocompanion basis chosen in Definition 2.1 and to the columns-
rows variables split. Without entering into technical considerations (which is out of
scope for this paper), one may make the following observations. (i) Different pseu-
docompanion forms (2.1) can be considered, leading to different structures associated
with different polynomial bases, such as the Lagrange or the monomial basis. Here,
the Lagrange basis will be considered exclusively. (ii) Different permutations and
rearrangements of 7s in Definition 2.2 may be considered. This results in a different
realization order with m = 2¢ + k — 1. Consequently, an adequate choice leads to a
reduced order realization, taming the realization dimensionality issue.

We are now ready to introduce the main ingredient, namely, the data set. The
data can be obtained from any (dynamical) black box model, simulator, or experiment.

3. Definition and Description of the Data. Following the Loewner philosophy
presented in a series of papers [35, 7, 29, 20], let us define P., the column (or right)
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Table | 1-D and 2-D tableau construction.

(a) 1-D tableau construction: tabj. (b) 2-D tableau construction: tabs,.
2
ls 1 G Xk | 2,00
1y we&
Lok ;1 1>\1,.4.,k1 W§17k2 (b(:'r
1
H1,..., q1 \fq1 1/»11,...,q1 bre V%,qg

data, and P,, the row (or left) data. These data will serve the construction of the
n-D Loewner matrices in section 4. In what follows, the 1-D and 2-D data cases are
first recalled, in preparation for the exposition of the general n-D case.

3.1. The I-D Case. When considering single-valued functions $(1s), i.e., n =1
in (1.2), we define the following column and row data:

(31> P(gl) :{(1)‘]17“7]1) ) jl :17"'7k1}7 P7S1) 5:{(1H11§V1‘1)7i1:17-~-7CI1}a

where lAjl,luil € C are disjoint interpolation points (or support points) for which
the evaluation of §), respectively, leads to w;, € C and v;; € C. To support our
exposition, let the data (3.1) be represented in the tableau given in Table 1(a), where
the measurement vectors Wfi € CM and Vg’; € C% indicate the evaluation of £
through the single variable 's, evaluated at '\;, and 'p;,, respectively. Table 1(a)
(also called tab;) is called a measurement matrix. From tab;, the (1,1) block of
dimension k7 x 1 contains the column measurements, and the (1,2) block of dimension
q1 X 1 contains the row measurements.

3.2. The 2-D Case. Let us define the column and row data

2 .
(32) PC(2) = {(1)\j172Aj2;Wj1,j2)7jlzla"'aklv l:1,2},
P7g) = {(1%‘172#1‘2;%‘1,@‘2)’ il:17"'7qla l:172}>

where {*\;,, i, } € C* and {2);,, 24, } € C? are sets of disjoint interpolation points,
for which evaluating $('s,2s), respectively, leads to Wi, jas Viy i, € C. Similar to the
1-D case, data (3.2) may be represented in Table 1(b), where W’%J‘& e Crkr*k2 gnq
V,% e € C?*% are the measurement matrices related to the evaluation of $ through
the two variables 's and 2s evaluated at {'\;,,%\;,} and {*p;,, % i, }-

Compared to the single-variable case, the tableau embeds two additional sets of
measurements: ¢, € C**2 and ¢, € C**%. The former results from the cross-
interpolation points evaluation of $('s,?s) along {'u;,,%\;,} and the latter from
the evaluation along {');,,2u;,}. It follows that Table 1(b) (denoted tabs) is a

measurement matrix.

Remark 3.1 (cross-measurements). In [29, 47], these cross-measurements are used
in the extended Loewner matrix construction for improved accuracy.

3.3. The n-D Case. Now that the single- and two-variable cases have been
reviewed and notations introduced, let us present the n-variable data case:

Pc(n) = {(1)\j1,. .. 7n/\jn;wj1,j27m7jn)’ jl = 1,.. .,kl, l: 1,. . ,n},

(8:3) ™ ._ " -
Py :{( Higse-es Min;vi17i27...,in)7 ERRRRYYID l:1a7n}

Similarly, one may derive the n-variable measurement matrix called tab,, illus-
trated in the table sequence given in Table 2. Similar to the expositions made for
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Table 2 n-D table construction: taby, (some configurations).

3 3 4 4 n n 3 3 4 4 n n
(a) "s ="A1,%s ="A1,...,"s =" A1 (b) °s ="u1, s ="p1,...," s ="u.
2 2
2 2 2 2
1g s )‘kz Haqz 1g s >‘k2 Haz
® 1
1)‘kl Wk17k271 ..... 1 Gere---c Ak Pecr--r berr-r
T
Hay Prec--c Grre-c Yhay brer-..r ngi-,qz,l ----- 1
3. _3 4 4 n_,_n 3._3 4 _ 4 n_,_n
(€) "8 ="Akz, "5 ="y ooy, "8 ="Appe (d) P8 ="pgs, s =" pgy, ., "8 = "lgs-
2 2
S 2 2 s 2 2
g ko Haz lg Ak Haqz
1/\kl W/(a,kz ..... kn ¢CTC“‘C 1>\k1 ¢car---r (z)cr'r-»-r
1
l,qul ¢7‘cc---c d)rrc---c Hqy (;57'”'“"'” VQlaQ2a“'${Z7l

the single- and two-variable cases, each subtable considers frozen configurations of
3s,4s,...,"s along with the combinations of the support points 3,4\, ...,"\;,
and 3p;,, 4y, ..., ", , thus forming an n-dimensional tensor. In particular, con-
sidering the first subtableau, the evaluation is for 3s,%s,...,"s = 3X1,%Aq,..., " A1
The W 5. € Ch* 2 and V& ., €CU*% entries concatenated form the
data tensors W® g CR1>F2XXkn gnq VO ¢ Ch X492 Xdn. tab is an n-dimensional

tensor.

4. Multivariate Loewner Matrices and Null Spaces. Based on section 3 (specif-
ically on (3.3) and tab,,), we are now ready to present our main tool: the multivariate
Loewner matriz. Following the exposition in the previous section, we first recall
the 1-D and 2-D Loewner matrices before presenting the n-D counterpart. For each
dimension, the Loewner matrix is illustrated in close connection to the Sylvester equa-
tion that it satisfies. Then, the relationship between the Loewner null space and the
barycentric rational function is stated, and the connection with generalized realization
is established, linking the data of section 3 with the realization of section 2.

4.1. The I-D Case. The single-variable case is briefly mentioned here (more
details and connections with dynamical systems theory may be found in [8]).

4.1.1. Loewner Matrix and the Sylvester Equation.

DEFINITION 4.1.  Given the data described in (3.1), the 1-D Loewner matriz
Ly € C"*™ has (iy, 51 )th entries equal to

Vi, — Wy,

(Ll)il’jl = 1Mi1 _1)\j1 siuu=1...,q1, 1=1,..., k1.

THEOREM 4.2. Considering the data in (3.1), we define the following matrices:

Ay :dlag (1>\13 ) 1)\k1) ) M; :dlag (lﬂla' . '71:”(11) 5

T T
le[wl,w%...,wkl} ,Vli[vl,VQ,...,Vql] y G/ﬂ,dLlilql, Rl:lkl'

The Loewner matriz as defined in Definition 4.1 is the solution of the Sylvester equa-
tiO’I’L, Ml]Ll - ILlAl == VlRl - L1W1.

4.1.2. Null Space, Lagrange Basis Form, and Generalized Realization. Com-
puting L;c; = 0, the null space of the Loewner matrix L, the following holds (with an
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appropriate number of interpolation points): ¢; = [cl ckl] " e contains the
so-called barycentric weights of the single-variable rational function H('s) of degree
(d1) = (k1 — 1) given by

Zlﬁ Ci Wiy Zk'l Biy
J1=1 1s—1X;, J1=1 1s—1X;,

H(ls) = k c; = k c; ’
PR e 5 VDD R e oy
where ¢/ O©W;=[ 81 B2 - B |€ C* interpolates H('s) at points 1),
RESULT 4.3 (1-D realization). Given Definition 2.2 and following Theorem 2.8, a
generalized realization of H('s) is obtained with the following settings: AY*® = —c| |

Blee =@, T =1X"e gnd A =.
Note that this representation recovers the result already discussed, e.g., in [8].

Ezample 4.4. Let us consider $(1s) = H(s) = (s* +4)/(s + 1), a single-valued
rational function of complexity 2 (i.e., dimension 2 along s). By evaluating $) in
I\, =[1,3,5] and 'w;, = [2,4,6,8], one obtains w;, = [5/2,13/4,29/6] and v;, =
[8/3,4,40/7,68/9]. Then, we construct the Loewner matrix, its null space (rank L; =
2), and a rational function interpolating the data as

1 07 13
Ty 3 5 13 29
1 3 5 3 —

L—| 2 1 3 _ 1 H(s)— 86D ~ 3G=3) + 565

1= 9 238 31 ea=| —5 | Hl) =" T

14 28 42 1 3(s—1)  3(s—3) ' s—5
13 31 49
18 36 54

Then, H(s) recovers the original function $(s). A realization in the Lagrange basis
can be obtained as H(s) = C®(s) "G, where

5 _13 @]
6 3 6

0 0'-1].

; C=|
P(s)=| s—1 0 bH5—s | and GT -

—

4.2. The 2-D Case. This section recalls the results originally given in [7] for the
case of two variables.

4.2.1. The Loewner Matrix and Sylvester Equations. Similarly to the 1-D
case, let us now define the Loewner matrix in the 2-D case.

DEFINITION 4.5. Given the data described in (3.2), the 2-D Loewner matriz
Ly € C192%kk2 hos matriz entries given by
G102 Viyia — Wi s
T (1ru’il - 1)‘3'1) (2:U’iz - 2)‘j2)
DEFINITION 4.6. Considering the data given in (3.2), we define the following
matrices based on Kronecker products:
A =diag (1)\1,...,1)\k1) ® 1, , M =diag <1u1,...7l,uql) ®1g,,
Ay =1, ®diag (2)\1, . ,2)\k2) , Mp =1, ®diag (2u1, - ,2,uq2) ,

— 1T
WQ_[Wl,lawl,27"‘7W1,k27W2,1;"‘7Wk1,k2] ) R2_1k;1k;23
]T

(4.1)

Vo=[V1i1,V12, -, V1,42 V21 -+ Vgr.qe) » and La=1g,.
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THEOREM 4.7. The 2-D Loewner matriz as defined in Definition 4.5 is the solu-

tion of the following set of coupled Sylvester equations:

(4.2)

MQX — XAQ = VQRQ — L2W2 and MlLQ — L2A1 =X

COROLLARY 4.8. By eliminating the variable X, it follows that the 2-D Loewner
matriz above satisfies the following generalized Sylvester equation:

MoM; Ly — Moo Ay

—M;LoAs +LoA1 Ay =V3Ry — LoWs.

4.2.2. Null Space, Lagrange Basis Form, and Generalized Realization. Com-

puting Loce = 0, the null space of the bivariate Loewner matrix, we
obtain (using the appropriate number of  interpolation points)
C1,1 " Clk C21 " C2k Cky,1 * " Ckyk
C;:[ 2 2 1 12]6Ck1k2andc;®
ol of of,
Wy = 8/ ‘ By ‘ ‘ ﬁ;—l | € CF*2 These are the barycentric weights of the bi-
variate rational function H('s,2s) of degree (dy,ds) = (k1 — 1,ko — 1),
Z Z Bi1.ia
H('s, %) = o) Cemha),

ZJl—l Zn Y

Ci1.d2

1)(25*2)‘1'2)

which interpolates $(1s,?s) at the support points {*);,,%\;, }.

RESULT 4.9 (2-D realization). Given Definition 2.2 and following Theorem 2.8, a

generalized realization of g(1s,?s) is obtained by means of A¥®8 =[ a1 g -+ ay, |,
BYe =] 3; By Bk, ], and T =1XMe A =2xXlae,

Example 4.10. Let us consider $(1s,%s) = H(s,t) = (s? )/(s —t+1) of complex1ty
(2,1). By evaluating § in '\;, = [1,3,5], ‘s, =[0,2,4], 2\j, = [-1,-3], and 2p;, =
[—2,—4], one obtains the response tableau tabs,

ro_—1 _3 _1 —2 7

3 5 2 3

9 27 9

-5 —7 | 3 -3

Wi | éw ] | -% % |-% -1

bre | Vi 0O 0] 0 0

8 16

-1 =2 -5 -7

8 32 64

L -3 6 ]-% -7
The 2-D Loewner matrix is computed with its null space (rank (L) =5) as
-1 3 3 9 5 5 7 r—17 r—17
3 5 5 7 7 e 3 3
1 3 1 9 5 5 il -3
9 5 5 7 21 3 9 5
2 | -z 0w -w 7 =
Le=|lg—=1—7 = T | 2= | _u | Wa=|
63 35 105 7 7 63 9 7
89 139 9o _5 -1 - 7 25
63 105 35 7 21 -9 -5
61 203 | 239 205 | _ 223 u 25
- 81 135 135 63 189 9 - L 1 u L — 3 J

It follows that the two-variable rational function H(s,t), given in the barycentric form,
recovers the original rational function $)(s,¢). Then, a realization in the Lagrange basis
(with {*A;,,2);,}) is obtained as H(s,t) = C®(s,t)"'G, where C = —e],
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s—1 3-s 0 , 0 , 0 0 0
s=1 0 5-s/ 0 | 0 0 0
Tl T i t+1 0 0 0 T 19
P(s,t) = 3 9 9 \ and G = 1/2
5.1, t-3, 0 0 o2
*********** e e Rt i 0
é -2 % | 0 | t+1 %1 0
5 | I S
[ -3 6 -z, 0 [ -t-3 2

By applying the Schur complement the realization can be compressed to dimension 4,
at the expense of introducing a parameter-dependent output matrix C(t).

4.3. The n-D Case.

4.3.1. Loewner Matrices and Sylvester Equations.
DEFINITION 4.11.  Given the data described in (3.3), the n-D Loewner matriz
L, € C1d2anxkikakn “poo entries given by

11,2250 050n Viyig,in =~ Wit,j2,000n

Frdzeedn = (Mg =) Cpig = 2Xj0) - (", = "Xg,)

DEFINITION 4.12. Considering the data given in (3.3), we define the following
matrices based on Kronecker products:

Ay =diag (1M1, 0, ) @1k, @1k, ®- - ®I,, My =diag (Yp1,..., gy ) ©Lg, ®Ig; ®- - ®1g,,
Az =T, ®diag (2A1,..., 20, ) @1k, ® - ®Iy,, Ma =1, ®diag (21,...,% g, ) ®1g; ®- - @1y,

An =1 ® R, ,®@diag("A1,...,"Ag,), Mp=I3® QL ,@diag("u1,..., g, ),

n—1
W, = [W1,1,...,1,W1,1,..‘,27'-~,W1,1,m,kn7W1,‘..,2,1,-~,Wk;1,k2%. knls Rn = 1k1k2 ey
Vo = [V, V1,020 Vg VIo2, 05+ o5 Vangargn) s 00d Lip = 1,4,

THEOREM 4.13. The n-D Loewner matriz as introduced in Definition 4.11 is the
solution of the following set of coupled Sylvester equations:

Mnxl - XlAn = Van - LTLW’I’H
MTL—1X2 - XQAn—l = Xla
MoX;1 —Xp—1A2 = X9,

M1Ln - H—‘nAl = Xn—l-

4.3.2. Null Space, Lagrange Basis Form, and Generalized Realization. When
using an appropriate number of interpolation points, we can compute the null space
of the n-variable Loewner matrix Ln, i.e., L,c, = 0. Here, we denote it with ¢, =

[ |Jag |-+ ||ag, ]€Crhzkn wrltten in terms of

Q1= [61, 1 e CL 1k €1, 2,1 o e CL L 20k, | | Cl,ko,...,kp_1,1 +++ Clko, ... ,kn,l,kn] 5
as=1[co,. .11 C2 1k | 0],

Qky = [Chy kgl *° Chykayeikn )

which are vectors that contain the so-called barycentric weights of the n-variable
rational function H('s,?s,...,"s) given by

. Bz, Jn
Zglfl 2327 Zgrrjfl ( 5_1/\j1)(231_22>\j2).n..(ns_n/\jn)

1.2 n
H('s,%s,...,

Ci1.d2,--1s j
Z]l_l Z]z_ ’ Z]n—l (18,1)\1_1)(2]51,J;)\j2jfl..(ns,n/\jn)
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where ¢, © W, =[ 81 B2 --- B, | € C**F» By construction, the function
H('s,%s,...,"s) expressed above interpolates (1s,%s,...,"s) at the support points
{1)‘j172)‘j27 ce 7n/\jn}'

RESULT 4.14 (n-D realization for k =1). Given Definition 2.2 and following The-
orem 2.8, a generalized realization of H(1s,%s,...,"s) is obtained with the following
settings: A =[ a1 ay - ag, |, B =[5 B2 -+ B |, T =XM% and
A = 2xLag®. S ® nxLag.

Ezample 4.15. Consider the three-variable rational function $(s,¢,p) = (s +
pt)/(p? + s +t) of complexity (1,1,2). It is evaluated at '\;, = [2,4], 2);, = [1,3],
3)\j3 = [5,6,7] and 1,ui1 = —1>\j1, 2/11‘2 = —2)\j27 3/1,2‘3 = —3)\j3. The resulting 3-D
Loewner matrix Lg has rank (Ls) =11 and

cl = [ 1 39 13| _15 41 _ 27| _15 41 _ 27 ‘ 4 _43 9 ]
3 2 28 14 28 28 28 28 28 28 | 7 28 )
W. = [ i 8 9 |17 20 23| 3 10 11 | 19 22 25 ]
3 4 39 52130 41 54|10 41 54132 43 56

Following Result 4.14, we may obtain the realization (C, ®(s,t,p), G). By arranging
as (s) — (¢,p), one obtains a realization of dimension m = 13. Instead, by arranging
as (s,t) — (p) we obtain m = 9. With the latter partitioning, we obtain kK = 2 x 2
(associated with variables s and ¢) and ¢ =3 (associated with variable p). Thus, with
reference to the multi-indices of Definition 2.3, we readily have I; = i, I, =43 and
I3 = iga and J; = [.7117]21]7 Jo = []12733]7 J3 = [J%a]g]v and Jy = [Jilajg}

5. Variable Decoupling and Addressing the Curse of Dimensionality. As in-
troduced in Definition 4.11, it follows that the n-D Loewner matrix IL,, is of dimension
Q x K, where Q =q1q2...q, and K = k1ks...k,. The dimension increases exponen-
tially with the number of parameters and the corresponding degrees (this is also
obvious when observing its Kronecker structure). Therefore, computing c¢,, results in
O(QK?) or O(KQ?) flop, which stands as a limitation of the proposed approach. It
is to be noted that the computationally most favorable case is K =@ = N, for which
the complexity is O(N?) flop.

The need for the full matrix to perform the SVD decomposition renders the process
unfeasible in practice for many data sets. Here, the C-0-D is addressed through a
tailored n-D Loewner matrix null space decomposition which results in the decoupling
of the variables. More specifically, in this section we suggest an alternate approach
allowing us to construct ¢, without constructing L.,,. This approach tames the C-o-D
by constructing a sequence of 1-D Loewner matrices and computing their associated
null space instead. Similar to the previous sections, for clarity, we start with the
2-D and 3-D cases before addressing the n-D case. We finally show that in the n-
D case, the null space boils down to (i) a 1-D Loewner matrix null space and (ii)
multiple (n —1)-D Loewner matrix null spaces. With a recursive procedure, (n—1)-D
becomes (n — 2)-D, etc. This then leads to a series of 1-D Loewner matrix null space
computations. Avoiding the explicit large-scale n-D Loewner matrix construction,
which is replaced by small-scale 1-D Loewner matrices, results in drastic flop and
storage savings.

5.1. Null Space Computation in the 2-D Case.

THEOREM 5.1. Let h; ; € C be measurements of the transfer function $(*s,?s),
with's;, i=1,...,n, and?s;, j=1,...,m. Let ki =n/2 and ko =m/2 be the numbers
of column interpolation points (see PC(Q) in (3.2)). The null space of the corresponding

2-D Loewner matriz is spanned by*

4We assume here that n = k1 + ¢1 and m = ka + g2, and k1 = ¢1 and ko = q2. In other
configurations, specific treatment is needed.
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1 2 1
(5.1) N (LLy) = vec {c?l . {cl’\kl}l,...,cl/\k"’ . {cl/\klh } ,
2

1 1
where clAk1 = N(Ll)\kl) is the null space of the 1-D Loewner matriz for frozen 1s =
2

Xk, and cl)‘j = /\/‘(]L?j) is the jth null space of the 1-D Loewner matriz for frozen
2., _ (2 2
SJ—{ )\1,...7 )‘kz}'

PROPOSITION 5.2. Given the setup in Theorem 5.1, the null space computation
flop complexity is k3 + kik3 or k3 + kok3$, rather than k3ks3.

Proof. For simplicity of exposition, let us denote by h; ; € C the value of a transfer
function $(s;,t;). We denote the Lagrange monomials by s —s;, i =1,...,n, and by
t—t;, 7=1,...,m. Then, let the response tableau (the data used for constructing
the Loewner matrix) and corresponding barycentric weights A# be defined as

31 123 tm t to tm
81 hi1 hi2 -+ him $1 Qi1 Q12 ot Qim
S2 ha 1 ha 2 e h2 m S2 21 22 e a2m
. . . b)
Sn=1 | hn—1,1 hn-12 - An—im Sp—1 | QGn-1,1 Qn_12 -+ OQn_1,m
Sn hn,l hn,? e hn,'m Sn Qn, 1 On 2 e On,m
tabsy ALag

It follows that the denominator polynomial in the Lagrange basis is given as
d(s,t) = WZ:L;L(S_:)W, where 7 = T TI72, (s — 5;)(t — t;). The coefficients
are given by the null space of the associated 2-D Loewner matrix, i.e., N(Lg) =
span (vec (A?8)) (where Al = [q; j]).

If we now set t =t¢; (j =1,...,m), the denominator polynomial becomes d(s,t;) =
T2 i oy, where my, = IIL (s — 5i)Ikz;(t; — ). In this case, the coefficients
are given by the null space of the associated 1-D Loewner matrix, i.e., N (Ltf) =
span ([a j, ..., 1,5, an’j]—r). Thus, these quantities reproduce the columns of A&,
up to a constant, for each column.

Similarly, for s = s, we obtain d(s,,t) = s, z;n (?jij-)
s;)II7L 1 (t —t;). Again, the coefficients are given by the null space of the associated
1-D Loewner matrix, i.e., N'(L{") = span ([n.1,- -+, Cnm—1,@nm] T )-

This reproduces the last row of A¥®8 up to a constant. To eliminate these con-
stants, we divide the corresponding vectors by «; ,, and obtain the following vectors:

__ -1
, where 7y, =TI777 (s, —

1,1 Q1,2 a1,m—1 A1,m
Qn 1 Qp 2 Qn m—1 QA m
Q21 a2 2 a2 m—1 a2 m
Qnp 1 Qp 2 Qp m—1 Qn om

Qp—1,1 Qn—1,2 Qp—1,m—1 Qn—1,m
Qnp, 1 Qo 2 Qn m—1 Qn m

1 1 1 1

Qnp, 1 Qo 2 Qn m—1 1
An,m Qnm Qnm

Finally, multiplying the jth column with the jth entry of the last row yields a vector
that spans the desired null space of L. The procedure requires computing the null
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Table 3 2-D tableau for Example 5.4: tabs.

2s

1, A =-1 Xy =-3 2ppi=-2  Zup=-4

=1 hg=—% hig=-32 his=—1% hig=—-2
No=3 | hg1= —% ha2 = —277 h23 = -3 hoy=—%
\s=5 h3,1*—% h3,2:—% h3,3:—% h3,4 = —10
1puy =0 hs1 =0 hg2 =0 hss3 =0 hia =0

e =2 | hs1=-1 hs o = —2 hs3 = *% hs.4 = *%
tpuz =4 | he1=-3 heo=—6 | hes=—-22 hes=—5

space of m 1-D Loewner matrices of size n X n and one 1-D Loewner matrix of size

m x m. Consequently, the number of flops is

the proof.

mn3 + m? instead of n3m

3 .
, concluding

|

Remark 5.3 (normalization with other elements). In the above treatment, we
normalize with the last element of the last row. However, it is clear that normalization
with other elements can be chosen. This is especially relevant if the last element is
zero, i.e., &, ,m, =0. In such a case, if we choose the kth row, we need the barycentric
coefficients of the kth first variable.

Ezample 5.4. Continuing Example 4.10, we construct the tableau with the corre-
sponding values, leading to Table 3. Here, instead of constructing the 2-D Loewner
matrix Lo as in Example 4.10, we invoke Theorem 5.1. We thus construct a sequence
of 1-D Loewner matrices as follows:®

o First, construct a 1-D Loewner matrix along 's for 2s = 2)\y = —3, ie.,
considering data of tabs(:,2) (second column). This leads to

3 _9 _35 5
2, 5 7 3 2, 9
2| _7 _13 _19 :2_ | _14
L, = 5 = ) and ¢, = 5
~9 _15 7 1
5 7 3

e Then, construct three 1-D Loewner matrices along s for s = {1\, 1 Xa, 1 A3},
i.e., considering data of tabs(1,:), tabs(2,:), and taby(3,:) (first, second, and
1 1 1 1 1 6 6
third rows). This leads to: Ll/\l = [‘1" Pl = cl)‘1 = [_1%}, I[,l)‘2 = {j é}
10 14

9
1 75 25 1

As _ | 28 12 A3 _I
],]L1 _{175 | = ¢ °

2
3

-
| e

1
e Finally, ¢ = | c?‘l ) [0?‘2]1 c?Q . [Ci)\g]z C?S ) [Ci)\Z]B ]T, and the scaled
null space vector is equal to co, directly obtained with the 2-D Loewner
matrix (see Example 4.10). Similarly, the rational function and realization
follow.
The corresponding computational cost is obtained by adding the following f1lop: one
1-D Loewner matrix of dimension 3 x 3 ~» null space computation takes 3% =27 flop
and three 2 x 2 1-D Loewner matrices ~ null space computation take 2% = 8 flop.
Thus, 27 + 3 x 8 = 51 flop are needed here, while 63 = 216 flop were required in
Example 4.10, involving 11[42 directly. Note tha;c the very same result may be obtained
by computing first A'(IL;**) € R? then NV(L,™), V(L) € R®. In this case, the
computational cost would be 23 + 2 x 33 =62 flop.

o

1
/\2_
o]

SHere, n=6, m=4, k1 =3, ka =2.
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5.2. Null Space Computation in the 3-D Case.

THEOREM 5.5. Let h; j, € C be measurements of the response of a transfer
function $(1s,?s,3s), along with 's;, %s;, and 3sy (i =1,....,n, 5 =1,...,m, and
k=1,....,p), and let k1 < n/2, ks < m/2, and k3 < p/2 be the number of column
interpolation points (see rP® in (3.3), n =3). The null space of the corresponding
3-D Loewner matriz is spanned by

1 2 3 1 2 3
(5.2) N(L3) = vec {c;‘l . [c:(L Akg» AkS)} X ...,c2)\k1 . [cg Aka> )\kS)}kJ ,

(Ao ®Aky) Creg:®Arg)y .
where c; =N(L; ) s the null space of the 1-D Loewner matriz for
frozen {%s,3s} = {*Aky, 3 ks }, and c2)‘j = N(]LQ/\J') is the jth null space of the 2-D
Loewner matriz for frozen ts;={ A1,..., A\, }.

Proof. The proof follows that of Theorem 5.1. First, a 1-D null space Loewner
matrix is computed for two frozen variables. Then a series of 2-D Loewner matrices
are computed along with the two other variables. Scaling is similarly applied. O

Remark 5.6 (toward recursivity). From Theorem 5.5, it follows that the 3-D
Loewner matrix null space may be obtained from one 1-D Loewner matrix, followed
by multiple 2-D Loewner matrices. Then, invoking Theorem 5.1, these 2-D Loewner
matrix null spaces may be split into a sequence of 1-D Loewner matrix null spaces.
Therefore, a recursive scheme naturally appears (see Example 5.7).

FExample 5.7. We continue with Example 4.15. We now illustrate how much the
complexity and dimensionality issue may be reduced when applying the suggested
recursive process. First, recall that the 3-D Loewner matrix L3 has a dimension of 12
and its null space is ¢ = [c;1||c;2] is given as

1 39 13 15 41 27 H _ 15 41 27 4 43 1 ]T'

C3:[§_%ﬁ_%%_% 28 28 2817 328

Computing such a null space requires an SVD matrix decomposition of complexity
123 = 1,728 flop. Here, instead of constructing the 3-D Loewner matrix L3 as in
Example 4.15, one may construct a sequence of 1-D Loewner matrices using a recursive
approach as follows.
e First, a 1-D Loewner matrix along the first variable 's for frozen second
and third variables X\ = 3 and 3\3 = 7, i.e., elements of tabs(:,2,3), is
constructed, leading to

oy 3 31 31 oy s 27
(*X2,°A3) _ | 2700 2800 (FX2,°A3) _ 28
L = : and ¢ = .
1 31 31 1
2592 2688 1

e Second, as !)\; is of dimension two (k1 = 2), two 2-D Loewner matrices
appear, one for frozen 'A\; and one for frozen '), along 2s and 3s, i.e.,
elements of tabs(1,:,:) and tabs(2,:,:). The first and second 2-D Loewner
matrices lead to null spaces spanned by

9 =

Ja_[714 13 26 5 —d1 TC%_ ~15 41 27 4 -43 7
2 27797 2179 27 | 28 728" 287 28|

SWe assume here that n = k1 + q1, m = k2 + g2, and p = k3 + g3, and k1 = q1, k2 = g2, and
k3 = q3. In other configurations, specific treatment is needed.
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2 3
which can now be scaled by the coefficients of cg A2, ’\3)7 leading to

T
1 2y 3 1 2y 3

fo— A1 (*X2,°X3) A2 (*X2,°A3) —

Cs= [ ¢ - [ey i ™ e J2 | =¢s

1 1

By considering the first 2-D Loewner matrix ILQM, leading to the null space c2A1, the
very same process as that presented in the previous subsection (2-D case) may be
performed (to avoid the 2-D matrix construction). In what follows we describe this
. . A e . o
iteration (for ¢, only, as it similarly applies to ¢,"?).

e First, one constructs the 1-D Loewner matrix along the second variable 2s

for frozen first and third variables, i.e., elements of tabs(1,:,3), leading to

(*X1,%X3) = = (*A1,323) -

1, A3) __ 520 540 1,°A3) __ 27

Ly =1 35 35 | ande = .
2496 2592 1

e Second, as 2\, is of dimension two (ky = 2), two 1-D Loewner matrices
appear, one for frozen 2)\; and one for frozen 2),, along s (here again, s is
frozen to 1A;). The first and second 1-D Loewner matrices lead to the null

spaces
(M) o7 3 T (Ax2) 75 41 T
o=l -3 1] ade ™ =[§ -5 1],
1 3
which can now be scaled by the coefficients of cg M, ’\3), leading to

(*X1,%M1) (*X1,%X3)
€y oy J1 _ClAl
1y ’2>\ 1y ’3)\ - 2
o

(2)\2’3)\3)
1

1
Scaling c2>‘1 with the first element of ¢ then leads to ¢y ;.

This step is repeated for L;M, leading, to the null space c;)‘2. The later is scaled
with the second element of cf’\z’s’\3), leading to c;,rg. By checking the complexity, one
observes that only a collection of 1-D Loewner matrices needs to be constructed, as
well as their null spaces. Here are constructed (i) one 1-D Loewner matrix along 's of
dimension 2 x 2 and (ii) two 2-D Loewner matrices along ?s and 3s, recast as two 1-D
Loewner matrices along ?s of dimension 2 x 2 and four 1-D Loewner matrices along 3s
of dimension 3 x 3. The resulting complexity is (1 x 23)+(2x23)+ (4 x 3%) = 132 f1lop,
which is much less than 1,728 flop for Ls. One may also notice that changing the
variable orders as s < 2s and 3s < s would lead to (1 x 3%)+ (3 x 23) 4 (6 x 23) = 99.
In both cases, the multivariate Loewner matrices are no longer needed and can be
replaced by a series of single variables, taming the C-o-D.

5.3. Null Space Computation in the n-D Case and Variable Decoupling. We
now state the second main result of this paper: Theorems 5.8 and 5.9 which allow
us to address the C-o0-D related to the null space computation of the n-D Loewner
matrix. This is achieved by splitting an n-D Loewner matrix null space into one 1-D
and a collection of (n —1)-D null spaces, thus another sequence of 1-D and (n — 2)-D
null spaces, and so on....

THEOREM 5.8. Given the tableau tab,, as in Table 2, being the evaluation of the
n-variable ) function (1.2) at the data set (3.3), the null space of the corresponding
n-D Loewner matriz L, is spanned by
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I, [ kg ® g™ Ay )
¢

1 2 3 n
Ak Neg 2 Mg s Aoy
vec [cn_l- c, c§ k2 ks " )} },
, ks

1,..., n—1 .

2 3 n 2 3 n
where Cg Abgr Mg M) spans ./\/'(]Lg Ak Mg )\k”)), i.e., the nullspace of the 1-D
1

Loewner matriz for frozen {2s,%s,...,"s} = {* Xk, Mhas -+ +» "M, |, and cn)‘_j1 spans
./\/’(L;)‘_jl), i.e., the jth null space of the (n — 1)-D Loewner matriz for frozen 's; =
{0

Proof. The proof follows that given for the 2-D and 3-D cases. ]

Theorem 5.8 provides a means to compute the null space of an n-D Loewner
matrix via one 1-D and k; (n — 1)-D Loewner matrices. Evidently, the latter (n —1)-
D Loewner matrix null spaces may also be obtained by k; 1-D Loewner matrices plus
k1ky (n—2)-D Loewner matrices. This reveals a recursive scheme that splits the n-D
Loewner matrix into a set of 1-D Loewner matrices. As a consequence, the following
decoupling theorem holds.

THEOREM 5.9. Given data (3.3) and Theorem 5.8, the latter achieves decoupling
of the variables and the null space can be equivalently written as

n n

(53) = &2 0 ToL,)0k @l )00 @1k, L),
~ ~—_—————

Bary("s) Bary(n—1s) Bary("—2s) Bary('s)

where ¢ * denotes the vector of barycentric coefficients related to the lth variable.

. . . 1 Aoy 2 Mgy A . 2, .
As an illustration, in Theorem 5.9, ¢ ® = cg k20 2ks k"), while ¢ ® is the
A3 A kg o™ Ak (GRYSIR VORIV

vectorized collection of k; vectors c; N , and so
on. In section 6 and (6.1), an illustrative numerical example is given. Next, we assess
how much this contributes to taming the C-o0-D, in terms of both flop and memory
savings.

5.4. Summary of Complexity, Memory Requirements, and Accuracy. Let us
now state the main complexity result, related to Theorem 5.8, which is stated in
Theorems 5.10 and 5.13, being the two major justifications for taming the C-o-D.
They describe the drastic reductions in the computational complexity and the required
memory.

THEOREM 5.10. The flop count for the recursive approach Theorem 5.8 is

n

J
(5.4) flop, = Z (k;’ Hkl_1> , where ko =1.
=1

j=1

Proof. Consider a function in n variables !s of degree d; > 1, 1=1,...,n (and let
k;y=d; +1). Table 4 shows the complexity as a function of the number of variables.

Hence, the total number of flop required to compute an element of the null space
of the n-D Loewner matrix L,, is

flop, = k‘% + (k‘l) k’g + -4+ (k‘lk‘g e k‘n_g) kgfl + (k‘lk‘g s k'n_gkin_l) ki
=k + ko (B3 + ko (k3 4 hna (kn g + K (R7)) ) 0
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Table 4 Complexity table as a function of the number of variables.

# of variables of $ #L1 matrix Size of each g flop per L;
n k1ks - kp_okn_1 kn k3
n—1 kiko - kp_2 kn—1 K3,
3 k1 ko k3 k3
2 k1 ko k3
1 1 k1 k3

COROLLARY 5.11.

The variable arrangement that minimizes the f£lop cost is

the one obtained by reordering the variables 's in decreasing complexity order d;, i.e.,
dy>dpyq forl=1,...,n—1.

COROLLARY 5.12. The most computationally demanding configuration occurs
when each 's order satisfies dj=k;—1=k—1 (1=1,...,n), requiring k interpolation
points each. The worst case £lop is (note that N =k™)

_slokt 1N

) flop, =k + k*+ -+ k12
(5.5) op; +E 4+ - —%

Note that (5.5) is an (n finite) geometric series of ratio k. Consequently, an upper
bound of (5.5) can be estimated by considering that k£ > 1 and for a different number
of variables n. As an example, for n=1{1,2,3,4,...}, the complexity is upper bounded
by {O(N3),0(N?230),O(N*94) O(N'73),...}, respectively. One can clearly observe
that when the number of variables n > 1, the flop complexity drops to 2.30, and this
decreases as n increases; e.g., for n =50, one obtains O(N106),

In Figure 1, we show the result in Theorem 5.10 (cascaded n-D Loewner) and
compare it to the reference full L,, null space computation via SVD,” of complexity
O(N3) and with O(N?) and O(N log(N)) references. In the same figure, we evaluate
the worst case (5.5) for different numbers of considered variables n = {1,2,...,50}
(each is evaluated with complexity k =1,...,50). Then, we evaluate an upper com-
plexity approximate of the form O(N?¥), where x > 0 is to be an upper bound of the
data set.

With similar importance, the data storage is a key element in the C-o0-D. In
complex and double precision, the construction of the n-D Loewner matrix L, €
CN*N_ where N = kiky---k,, requires disk storage of 735N MB. The following
theorem states the result in the 1-D case.

THEOREM 5.13. Following the procedure in Theorem 5.8, one only needs to se-
quentially construct single 1-D Loewner matrices, each of dimension Ly € Cchxk,

The largest stored matriz is Ly € CFma*kne yhere ko = max ky (l=1,...,n). In
complex and double precision, the mazimum disk storage is 535k2,,, MB.

As an illustration, for a 6-variable problem with complexity [19,5,3,5,7,1], one
requires [k1, ko, k3, k4, ks, ke] = [20,6,4, 6,8, 2] points, and then N = 46,080. The n-D
Loewner matrix requires 31.64 GB of storage, while the 1-D version would require, in
the worst-case scenario (i.e., for kpax = 20), only 6.25 KB of storage.

7One should note that we are considering here the case K = Q = N to simplify the exposition.
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Full n-D Loewner vs. Cascaded n-D Loewner 0
250

L , (n=1)
10 1= o)
—.O(N?) 2.29 (n=2)
102001 OW. log(N)) 1.94 (n=3)
1.73 (n=4)
O”' ‘l "9 —
10150, ’// .59 (n=5)
o, 2
S ‘,/ 1.50 (n=6)
“ ,o’
10100 L ’/'/' 1.30 (n=10)
2 L 1.15 (n=20)
1090} = 1.10 (n=30)
"""" 1.08 (n=40)
10[
10 w w w w w w 1.06 (n=50)
10* 10% 10%° 103 10%° 10%° 10%°
n-D Loewner matrix dimension
Fig. | flop comparison: Cascaded n-D Loewner worst-case upper bounds for a varying number of

variables n, while the full n-D Loewner is O(N3) (black dashed); comparisons with O(N?)
and O(Nlog(N)) references are shown by dash-dotted and dotted black lines.

Remark 5.14. In addition to computational complexity and storage, this method
improves the numerical accuracy. For instance, in the modest case of a function with
complexity [9, 7, 2], the rank of the 3-D Loewner matrix in floating point is much bigger
than one. The method proposed in this paper, therefore, makes the computation of
the barycentric weights possible.

From the above considerations, it follows that the proposed null space computa-
tion method leads to a drop in not only the computational complexity of the worst-case
scenario but also the memory requirements.

As illustrated in section 8, this allows the treatment of problems with a large num-
ber of variables, in a reasonable computational time and with manageable complexity,
which is the main reason for claiming that the C-o-D has been “tamed.”

6. Connection to the Kolmogorov Superposition Theorem. Several researchers
have contributed to sharpening Kolmogorov’s original result, so currently it is often
referred to as the Kolmogorov, Arnol’d, Kahane, Lorenz, and Sprecher Theorem (see
[38], Theorem 2.1). For simplicity, we will follow [38] and state this result for n =3,
so that we can compare it with Theorem 5.9.

THEOREM 6.1. Gliven a continuous function f : [0,1]> — R of three variables,
there exist real numbers \;, i = 1,2, single-variable continuous functions ¢y : [0,1] —
R, k=1,...,7, and a single-variable function g: R — R such that

7
flav,wa,ws) = g(dr(@1) + Mok(wa) + Aoy (w3)) V(w1 @2, 23) € [0,1].
k=1
In the above result, \; and ¢y do not depend on f. Thus, for n =3, eight functions
are needed together with two real scalars X;.

The goal of this section is to make contact with KST using a three-variable
example.

Ezample 6.2. Consider the three-variable function $(s,t,z) = % Since

the degrees in each variable are (2,1,1), we will need the integers k1 = 3, ko =2, and
k3 = 2. This implies that N = k1koks = 12. The right and left interpolation points are
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chosen as s1 =1, $9=2, s3=3; t1 =4, to=5; 1 =6, 29 =7, and s4 = 3/2, s5 =5/2,
s¢ = 7/2; t53 =9/5, t4 = 11/5; x5 = 13/3, x4 = 5, respectively. Following the theory
developed above, the right triples of interpolation points are S = [s1, s3, s3] ® 1o ® 14,
T=13®[t1, t2]®1y, X =130 15 @ [x1, x] € C'* (where s; = s—s;, t; =t —t;, and
x; =x —x;). Thus, the resulting 3-D Loewner matrix has dimension 12 x 12, with the
12 barycentric weights given by (for emphasis, we denote by Bary what was earlier
denoted by c)

Bapy_ [16 17 1819 404246 4824 25 28 T
AY=15 "29 T 2029 292029 2029 29 29

As already shown, a decomposition of this vector follows in a (pointwise) product
of barycentric weights with respect to each variable, separately. Thus, decoupling
of the problem is achieved (which is one of the important aspects of KST), and
the following is obtained: Bary = Bary, ©® Bary, ©® Bary,, where ® denotes the
pointwise product. This is (5.3) for n = 3 and is the key result that allows the
connection with KST and the taming of the C-o-D. We have shown that the 3-D
multivariate function can be computed in terms of three 1-D functions (one in each
variable). These functions denoted below by ®(x), ¥(t), and Q(s) are obtained from
a collection of null space computations: 1 along s, 3 along ¢, and 6 along x. More
specifically, following notations of Theorem 5.9,

_ 16 _18 _ 20 _ 23 24 _ 28
c® = vec ( 117 119 121 124 125 129 ) , Barym =c”,
_r 7 25
(6.1) ¢t — vec ( 119 18 129 > , Bary, = ¢! ®1s,
c“":vec( % —% 1 )7 Bary, 6 =c’ ®135.9.

Furthermore, Lag(x), Lag(t), and Lag(s) are the monomials of the Lagrange bases
components in each variable. Finally, W are the right interpolation values for the
triples in S x T x X. The ensuing numerical values are as follows:

- 167 0 177 - 19 4 [ 1 7€ L 77T 1 71
17 19 29 z—6 t—4 s—1 2
1 a7 19 1 1 1 9
19 29 x—T7 t—4 s—1 17
_18 1 19 1 1 1 4
19 29 z—6 t—5 s—1 9
1 1 19 1 1 1 9
29 z—T t—5 s—1 19
_20 _z Pt 1 1 1 17
21 8 29 z—6 t—4 s—2 20
1 _7 _48 1 1 1 19
8 29 x—T t—4 s—2 21
S N R T N S G K S S R I B R AT R
24 29 z—6 t—5 s—2 23
1 1 _ 48 1 1 1 19
29 x—T t—5 s—2 24
_24 _25 1 1 1 1 7
25 29 x—6 t—4 s—3 6
1 _25 1 1 1 1 31
29 z—7 t—4 s—3 25
28 1 1 1
29 1 1 z—6 t—5 s—3 1
1 1 1 31
e R T L =7 1 L t—=5 1 L s—3 29
—_—_—— —— —————
Bary, Bary, Bary, Lag(z) Lag(t) Lag(s) w
®(z)=Bary, © Lag(x),
@0 { (1))=Bary, © Lag(1),

Q(s)=Bary, © Lag(s).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/06/25 to 77.205.19.27 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

LOEWNER FRAMEWORK FOR PARAMETRIC DYNAMICAL SYSTEMS 763

With the above notation, we can express H as the quotient of two rational functions:

A(s,tx) = » [Wo ()0 ¥(t)oQ(s)

Trows

. r:lizzj):H(s,t,x).
d(s,it,z) = Y [®(z)©¥(t)© Qs)] d(s,t,z)

rows

Consequently, KST for rational functions, as composition and superposition of one-
variable functions, takes the form

n(s,t,r) = Z exp [log W + log ®(x) + log ¥ (t) + log Q(s)],

rows

(6.2) .
d(s,t,x) = Z exp [log ®(z) + log W(t) + log Q(s)].

Trows

Similarities and Differences between KST and the Results in (5.3) and (6.2).

(a) While KST refers to continuous functions defined on [0, 1]", (6.2) is concerned
with rational functions defined on C".

(b) Expressions in (6.2) are valid in a particular basis, namely, the Lagrange
basis. Multiplication of functions in (6.2) is defined with respect to this
basis.

(¢) The composition and superposition properties hold for the numerator and
denominator. This is important in our case because (6.2) preserves interpo-
lation conditions.

(d) The parameters needed are n =3 Lagrange bases (one in each variable) and
the barycentric coefficients of the numerator and denominator. Note that in
KST, no explicit denominators are considered.

(e) Both KST and (6.2) accomplish the goal of replacing the computation of
multivariate functions by means of a series of computations involving single-
variable functions, KST for general continuous functions, and (6.2) for ratio-
nal functions. Notice also that (6.2) provides a different formulation of the
problem than KST.

(f) In addition to the Kolmogorov—Arnold neural nets (KANs) [33], our approach
provides a new application of KST to the modeling of multiparameter sys-
tems.

7. Data-Driven Multivariate Model Approximation. This section focuses on
the numerical aspects of constructing the realization from data measurements.

7.1. Two Algorithms. In what follows, we detail two algorithms. The first
is a direct method extending the algorithm proposed by the authors in [29], while
the second is an iterative method inspired by the p-AAA presented in [43]. These
procedures are outlined in Algorithms 7.1 and 7.2. For additional details, see also
[29, 43].

7.2. Discussion. The main difference between the two algorithms is that Algo-
rithm 7.1 is direct while Algorithm 7.2 is iterative. Indeed, in the former case, the
order is estimated at step 2, while the order is iteratively increased in the latter case
until a given accuracy is reached.

By analyzing Algorithm 7.1, the process first needs to estimate the rational order
along each variable 's. Then, we construct the interpolation set (3.3) (here, one may
shuffle data and interpolate different blocks). From this initial data set, the n-D
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Algorithm 7.1. Direct data-driven pROM construction.

Require: tab,, as in Table 2
1: Check that interpolation points are disjoint.
2: Compute d; = maxy rank }Lgk), the order along variable 's (k is the number of all

1D Loewner matrices when fixing variables {'s,...,*~1s k*+1g . ms}).

3: Construct (3.3), a subselection P™ where (k1,ka,... kn)=(d1,da,...,dy,) +1,
and P,Sn), where (¢1,92,...,q,) gather the rest of the data.

4: Compute c,,, the n-D Loewner matrix null space, e.g., using Theorem 5.8.

5: Construct A2¢ B4 T' and A as in Result 4.14 with any left/right
separation.

6: Construct multivariate realization as in Theorem 2.8.

Ensure: H(!s,...,"s) = C®(!s,%s,...,"s) G interpolates H('s,?s,...,"s) along
208

Algorithm 7.2. Adaptive data-driven pROM construction.

Require: tab,, as in Table 2 and tolerance tol >0

1: Check that interpolation points are disjoint.

2: while error > tol do

3:  Search the point indexes with maximal error (first iteration: pick any set).

4:  Add points in P™ and put the remaining ones in Pﬁn), to obtain (3.3).

5:  Compute c,, the n-D Loewner matrix null space, e.g., using Theorem 5.8.

6:  Construct AM& BL2¢ T' and A as in Result 4.14 with any left /right
separation.

7:  Construct multivariate realization as in Theorem 2.8.

8:  Evaluate error = math/a-b\n — tab,||, where tab,, is the evaluation of H(ls,
..,™s) along the support points.
9: end while
Ensure: H(!s,...,"s) = C®(!s,%s,...,"s)"'G interpolates $(*s,2s,...,"s) along
P,

Loewner matrix and its null space may be computed using either the full (section 4)
or the 1-D recursive (section 5) approach. Based on the barycentric weights, the
realization is constructed using Result 4.14.

The difference between the two algorithms consists of the absence of the order
detection process in the second algorithm. Instead, it is replaced by an evaluation of
the model along the data set at each step until a tolerance is reached. Then, at each
iteration, one adds the support points set where the maximal error between the model
and the data occurs. This idea is originally exploited in the univariate case of AAA
in [39] and its parametric version from [43]; we similarly follow this greedy approach.

7.2.1. Dealing with Real Arithmetic. All computational steps have been pre-
sented using complex data. However, in applications, it is often desirable to deal with
real-valued functions in order to preserve the realness of the realization and to allow
the time-domain simulations of the differential-algebraic equations. To do so, some
assumptions and adaptations must be satisfied. Basically, interpolation points along
each variable must be either real or chosen to be closed under conjugations. For more
details on the exact procedure, we refer the reader to [29, section A.2].
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n-D Loewner matrix singular value decay
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Fig. 2 2-D simple synthetic model: Algorithm 7.1 normalized singular values of each 1-D (left) and
the 2-D (right) Loewner matrices.

7.2.2. Null Space Computation Remarks. To apply the proposed methods to a
broad range of real-life applications, we want to comment on the major computational
effort and hard point in the proposed process: the null space computation. Indeed,
in both the full n-D and the recursive 1-D cases, a null space must be computed.
Numerically, there exist multiple ways to compute it: SVD or QR decomposition, linear
resolution, etc. Without going into detail beyond the scope of this paper, many
tuning variables may be adjusted to improve accuracy. These elements are crucial to
the success of the proposed solution. In the next section, all null spaces have been
computed using the standard SVD routine of MATLAB. For more detail, refer to [24].

8. Numerical Experiments. The effectiveness of the numerical procedures
sketched in Algorithms 7.1 and 7.2 is illustrated in this section, through examples
involving multiple variables ranging from two to twenty. In what follows, the compu-
tations were performed on an Apple MacBook Air with 512 GB SSD and 16 GB RAM,
with an M1 processor. The software used was MATLAB 2023b.

8.1. A Simple Synthetic Parametric Model (2-D). Let us start with the simple
example used in [29, section 5.1] and [43, section 3.2.1], whose transfer function reads
H(s,p) = 1+25(15+p)2 + 1+25(0£0'5)2 + pi‘%s. We use the same sampling setting as
in the above references. Along the s variable, 21 points are linearly spaced from
[—1,1]. For the direct method of Algorithm 7.1, we alternatively sample the grid as
'\, =[-1,-038,...,1] and *;, = [-0.9,—0.7,...,0.9]; then, along the p variable,
there are 21 linearly spaced points from [0, 1]. For the direct method of Algorithm 7.1
we alternatively sample the grid as 2\;, =[0,0.1,...,1] and ?y;, = [0.05,0.15,...,0.95].
First, we apply Algorithm 7.1 and obtain the single-variable singular value decay
reported in Figure 2 (left), suggesting approximation orders along (s,p) of (d1,d2) =
(4,3), being precisely that of the equation $(s,p) above. Then, the 2-D Loewner
matrix is constructed and its associated singular values are reported in Figure 2
(right), leading to the full null space and barycentric weights (results follow next).

Next, we investigate the behavior of Algorithm 7.2. In Table 5, we report the
iterations of this algorithm when computing the null space with either the full 2-D
version (Table 5(a)) or the recursive 1-D version (Table 5(b)). In both cases, the
same order is recovered, i.e., (4,3). Even if the selected interpolation points are
slightly different, the final error is below the chosen tolerance, i.e., tol=10"°. By now
comparing the flop complexity, the benefit of the proposed recursive 1-D approach
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Table 5 2-D simple model iterations with different null space computation methods.

(a) Algorithm 7.2 (full Ly) (b) Algorithm 7.2 (recursive L1)
Tter. | "Ajy | 2Xjs | (K1, k) | flop Ny | 2Xa | (K1, ko) | flop
1 0 0 (1,1) 13 0 0 (1,1) 2
2 -1 (2,1) 23 —1 (2,1) 10
3 —0.9 | 0.9 (3,2) 63 0.1 | 0.05 (3,2) 51
4 -0.1 | 0.2 (4,3) 123 —0.9 | 0.75 (4,3) 172
5 0.6 1 (5,4) 203 0.7 | 0.15 (5,4) 445

Fig. 3 2-D simple model: Frequency responses (left) and errors (right); original vs. Algorithm 7.1
(black lines) and Algorithm 7.2 (orange dots and dashed lines).

with respect to the 2-D approach is clearly emphasized, even for such a simple setup.
Indeed, while the latter is of =14 23 +63 + 123 +203 = 9,953 flop, the former leads
to 2+10+451+172+445 =680 flop, which is 14 times smaller. The mismatch in the
three configurations over all the sampling points of the tabs data is close to machine
precision for all configurations.

Finally, to conclude this first example, Figure 3 reports the responses (left) and
mismatch (right) along s for different values of p, for the original model and the
obtained models with Algorithms 7.1 and 7.2 (with recursive 1-D null space).

8.2. Flutter (3-D). This numerical example is extracted from industrial data and
considers a mixed model/data configuration. It represents the flutter phenomena for
flexible aircraft as detailed in [18].% This model can be described as s>M (m)z(s) +
sB(m)x(s) + K(m)xz(s) — G(s,v) = u(s), where M(m), B(m),K(m) € R"™™" are the
mass, damping, and stiffness matrices, all dependent on the aircraft mass m € R
(n = 100). These matrices are constant for a given flight point (but vary for a mass
configuration). Then, the generalized aeroelastic forces G(s,v) € C"*" describe the
aeroelastic forces exciting the structural dynamics. This G(s,v) is known only at a
few sampled frequencies and some true airspeed, i.e., G(ww;,v;), where i =1,...,150
and j=1,...,10. Note that these values are obtained through dedicated high-fidelity
numerical solvers. The sampling setup is as follows. Along the s variable, ');, are
150 logarithmically spaced points between 2[10,35] and pu;, = —!\;,. Along the v

8We acknowledge Pierre Vuillemin for generating the (modified) data.
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n-D Loewner matrix singular value decay Original vs. Approximation (varying masses and velocities)

Normalized singular value

10 20 30 40 50 60
# singular value

Frequency [rad/s|

Fig. 4 3-D flutter model: 3-D Loewner matriz singular values (left) and frequency responses (right).
Original (solid colored) and pROM (black dotted).

variable, 2)\j2 are five linearly spaced points between [4.77,5.21] - 10? and 2y;, and
five linearly spaced points between [4.82,5.27] - 103. Along the m variable, 3)\j3 are
five linearly spaced points between [1.52,1.66] - 103 and 2j;, and five linearly spaced
points between [1.54,1.68] - 103.

Here, the data is a 3-D tensor tabs € . By applying Algorithm 7.1,
an approximation order (14,1,1) is reasonable. The singular value decay of the 3-D
Loewner matrix is reported in Figure 4 (left). Then, the original and pROM frequency
responses are shown in Figure 4 (right), resulting in an accurate model.

One relevant point of the proposed Loewner framework, nicely illustrated in this
application, is its ability to construct a realization of a pROM based on a hybrid
data set, mixing frequency-domain data and matrices. By connecting this problem
to NEPs, the parametric rational approximation allows us to estimate the eigenvalue
trajectories; we refer to [42, 47, 18] for details and industrial applications.

8.3. A Multivariate Function with a High Number of Variables (20-D). To
conclude and to numerically demonstrate the scalability features of our process, let
us consider the 20-variable rational model $(*s,...,?s) =

C300>< 10x10

. 5
3.163 448541264 185 1454 15
1610 1 242 .35  4g 4 bg 4 6g 4 Tg.85 1 95.10g. 11g | 185 { 1863 . 4 175 | 185 195 _ 20’

with a complexity of (10,2,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1). By applying Algo-
rithm 7.1 with the recursive 1-D null space construction, the barycentric coefficients
c, € C'™3159 4re obtained with a computational complexity of 149,226,836 flop,
computed in 4 hours. As explained in the Supplementary Material, this vector allows
the reconstruction of the original model with an absolute error ~ 10~" for a random
parameter selection. Applying the full n-D Loewner version instead would theoret-
ically require the construction of a Loewner matrix of dimension N = 17,301,504,
with a null space computation costing about 5.18 - 102! flop, which is prohibitive
on a standard computer. Storing such an N x N n-D Loewner matrix would require
4,356 TB in double precision, while the 1-D approach needs 1.89 KB only (in the worst
case).

9. Conclusions. We have investigated the Loewner framework for linear mul-
tivariate/parametric systems and developed a complete methodology (and two al-
gorithms) for data-driven n-variable pROM realization construction in the (n-D)
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Loewner framework. We have also shown the relationship between n-D Loewner and
Sylvester equations. Then, as the numerical complexity and matrix storage explode
with the number of data points and variables, we introduced a recursive 1-D null space
procedure, equivalent to the full n-D procedure. This process allows the decoupling
of the variables involved and thus provides the effect of drastically reducing (i) the
computational complexity and (i) the matrix storage needs. This becomes a major
step toward taming the curse of dimensionality. In addition, we have established a
connection between the decoupling result and the Kolmogorov superposition theorem
(KST). We have applied these results to numerical examples throughout the paper,
demonstrating their effectiveness. Last, we claim that the contributions presented
are not limited to the system dynamics and rational approximation fields, but may
also apply to many scientific computing areas, including tensor approximation and
nonlinear eigenvalue problems, for which dimensionality remains an issue.

Supplementary Material and Software Availability. Additional material to sup-
plement the findings reported in this paper is available at

https://sites.google.com/site/charlespoussotvassal /nd loew_tcod

and in [6] (where over 30 test cases are analyzed and various methods are compared in
detail). Furthermore, the MATLAB code used to generate the figures and illustrations
corresponding to the numerical results presented in this paper is available at

https://github.com/cpoussot/mLF
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