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Abstract
Purpose – This study aims to develop a systematic and efficient method for modeling and reducing the
computational complexity of the Maxwell equations in 2D. By maintaining the port-Hamiltonian structure in
both the full order model (FOM) and reduced-order model (ROM), this approach ensures that the essential
dynamical properties are preserved. The ultimate goal is to create a reduced order model that is suitable for
rapid simulations, control and analysis in electromagnetic applications, such as waveguides, which involve
boundary control and observation, as well as interface discontinuities.

Design/methodology/approach – This research introduces an ROM procedure for the 2D Maxwell
equations within a port-Hamiltonian framework. Using a mixed finite element method, the high-fidelity FOM
is generated, which retains the original structure of the Maxwell equations. Model reduction is then achieved
through the Loewner framework, allowing for a low-complexity model that is computationally efficient while
preserving the port-Hamiltonian properties. A lifting operator is employed to recover the FOM’s internal
variables from the reduced model, validating the accuracy of the ROM in reproducing the FOM’s dynamic
behavior.

Findings – The proposed methodology effectively reduces the dimension of the Maxwell system by
approximately 35 times, significantly decreasing computational time while maintaining high fidelity in the key
output responses. Simulation results demonstrate that the reduced model accurately replicates the full order
model’s dynamics and power balance. The approach also highlights the advantages of using a port-
Hamiltonian structure for energy tracking, with ROMs exhibiting only minor discrepancies due to truncation.
The findings validate the ROM as a reliable and efficient approximation of the original high-dimensional
system, suitable for complex electromagnetic configurations.

Originality/value – This work provides a novel approach to reducing the 2D Maxwell equations within
a port-Hamiltonian framework, preserving essential structure and dynamical properties. By leveraging
the Loewner framework with a unique focus on passivity preservation, the method offers a practical
solution for efficient simulation and control in electromagnetic systems. This ROM methodology, with
its reduced computational burden and enhanced accuracy, is valuable for applications in electromagnetic
field simulations and control design, where high computational efficiency and structure preservation are
critical [1].
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1. Introduction
In aerospace engineering, solving Maxwell’s equations is essential for accurate electromagnetic
analysis of systems such as antennas, radar cross-section calculations and stealth technology
design. The present work is motivated by an efficient numerical representation of the Maxwell’s
equation on a 2D domainΩ, with actuators and sensors that are collocated at the boundary ∂Ω; the
partial differential equation (PDE) model is first described as a distributed port-Hamiltonian (pH)
system [see e.g. van der Schaft and Maschke (2002) and Rashad et al. (2020) for a recent
overview], second discretized in a structure-preserving manner thanks to a particular instance of
the mixed finite element method (MFEM) (Cardoso-Ribeiro et al., 2021). Although in 1D with
physical parameters which are uniform in space, the input-output transfer function of a wave
equation would be easy to compute, the task becomes more difficult with varying parameters, see
e.g. Condon (2024). In a generic geometric 2D domain with heterogeneous and anisotropic
parameters, and even more in the case of theMaxwell system, it is almost impossible. However, a
high-fidelity and complex full order model (FOM), taking all these important properties into
account, can be computed at the discrete level thanks to the partitioned finite element method
(PFEM) following Cardoso-Ribeiro et al. (2021), which can be efficiently simulated using
SCRIMP [2], a dedicated Python package, see Ferraro et al. (2024).

The FOM results in a finite-dimensional linear pH system, embedding a very large
number of internal state variables, a relatively large number of inputs and outputs. Such a
high dimension is a limiting factor for simulation, optimization, analysis and control. Easy-
to-use dynamical models (e.g. in a many query simulation-based process), reducing the
computational burden, is one purpose of the model approximation and reduction discipline.
The goal is to approximate the original system with a smaller and simpler system with the
same structure and similar response characteristics as the original, the low-complexity
model, also called a reduced-order model (ROM).

Hence, we seek to compute an ROM while imposing the port-Hamiltonian structure.
Many benefits lie in the preservation of this structure, they will be detailed later. Most
notably, the state of the port-Hamiltonian ROM holds significant importance from an energy
perspective. Indeed, the pH structure provides three major benefits:

(1) the different energies can be analyzed (and physical characteristics can be extracted
from the pH form);

(2) the original model structure is preserved (passivity), which is convenient for
physicists; and

(3) the structure allows one to keep the interpretability of the variables.

As an illustration of the capabilities of the method, we provide here Figure 1, which shows
the a snapshot of the time-domain simulation results of the FOM compared to the ROM
obtained by the following procedure of § 4, which has 13 times less degrees of freedom and a
computational time almost 100 times faster.

The key point of this work is to guarantee the preservation of the port-Hamiltonian
structure along the following three steps: modeling, discretization, model order reduction.

The use of pH framework for electrical network is not new, see e.g. Bartel and Günther
(2018) for a review, Gernandt et al. (2021) for the port-Hamiltonian setting, and Márquez
et al. (2020) for the implementation usingModelica. For full wave electromagnetics, one can
refer to van der Schaft and Maschke (2002) for a presentation of Maxwell’s equations as a
pHs, to Ciuprina et al. (2022) for a formulation with boundary conditions as ports together
with the use of the finite elements method (FEM), also to Clemens and Weiland (2001) for
the presentation a finite integration technique (FIT), which has the property of structure-
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preservation; finally Bartel et al. (2024) shows some recent applications of these techniques
to coupled systems, and Bundschuh et al. (2023) provides a platform-independent simulation
software for various electromagnetic and thermal field problems. Now as far as model order
reduction (MOR) is concerned, the use of the Loewner framework has been successfully
applied to models of PDEs in 1D, first in Cherifi and Brugnoli (2021) and recently Toledo-
Zucco et al. (2024b), an attempt to tackle PDEs in 2D was made in Poussot-Vassal et al.
(2023) for the wave equation.

1.1 Outline
The paper is organized as follows: writing the classical Maxwell equations as an infinite-
dimensional pH system, both in 3D and in 2D, is presented in § 2; based on this, passing from
the distributed-parameter pH system to a lumped-parameter pH system of high dimension
while keeping the underlying structure is detailed in § 3, with the use of the PFEM; then, § 4
explains how to obtain a low-dimensional pH system, using the Loewner framework. The
test case of a waveguide is worked out in § 5. Finally, some conclusions are drawn and some
perspectives are sketched in the § 6.

In addition, time-domain simulation videos of the results obtained with the proposed pH-
ROM construction are available at the following links: https://youtu.be/ORhRz1hT_Ak
(electric and magnetic fields) and https://youtu.be/MtazBkkQQc0 (run with mismatch error
over the full mesh).

1.2 Notations and preliminaries
The set of real and complex numbers of dimension n are denoted, respectively byℝn andCn.
The complex variable ı=

ffiffiffiffiffiffiffiffi
− 1

p
. The notation Xn

Λ : fx 2 XnnΛg, where Λ denotes a finite

Figure 1. Snapshot of magnetic and electric fields of the full order model (FOM) of dimension n= 733
and obtained reduced order model (ROM) of size r = 55

Source:Authors’ own work
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number set (typically singularities) in Xn (Xn = {ℝn, Cn}). We denote X> and XH the
transpose and transpose conjugate of matrix X, respectively. Identity matrix of dimension p
reads Ip and m × p rectangular (resp. m square) null matrix is denoted 0m,p (resp. 0m). The
Laplace variable is denoted s [C. Along the paper, we will consider multi-input multi-output
(MIMO) linear time invariant (LTI) continuous-time dynamical systems realizations (with
x(0) = 0) of one of this kind:

Eẋ tð Þ=Ax tð Þ+Bu tð Þ;  y tð Þ=Cx tð Þ; (1a)

x tð Þ=Ax tð Þ+Bu tð Þ;  y tð Þ=Cx tð Þ+Dx tð Þ ; or (1b)

Mẋ tð Þ= J −Rð ÞQx tð Þ+ G−Pð Þu tð Þ; y tð Þ= G+Pð Þ aQx tð Þ+ N +Sð Þu tð Þ; (1c)

where x(t) [ ℝn and u(t), y(t) [ ℝm are vector-valued functions denoting the internal
variables, input and output of the system. In the standard descriptor (1a) and non-descriptor
(1b) forms, we consider constant matrices E, A [ ℝn×n, B, C> [ ℝn×m and D [ ℝm×m. When
considering the pH form (1c),M, J, R, Q [ ℝn×n, G, P [ ℝn×m and N, S [ ℝm×m. For brevity,
(1a) and (1b) are denoted Σ := (E, A, B, C, 0m) and Σ := (In, A, B, C, D) respectively. The pH
form (1c) is shortly denotedΣpH := (M,Q, J, R,G, P,N, S).

By introducing the co-energy variable Me(t) = Qx(t), (1c) boils down to eMe tð Þ=
J −Rð Þe tð Þ+ G−Pð Þu tð Þ and y(t) = (G +P)>e(t) + (N+ S)u(t), where eM ≃Q− 1M is another
ℝn×n matrix. The latter is the so-called co-energy formulation of the pH system, and is of
specific interest in the numerical simulation. This interest will be enlightened in § 3.

In each case, we define the associated transfer functions as H: CΛ ! Cm×m, where H(s) =
C(sE – A)–1B for (1a), H(s) = C(sI – A)–1B + D for (1b) and H(s) = (G +P)>Q(sM – (J –
R)Q)–1(G – P) + (N+S) for (1c) [3]. On the basis ofH, let us also denote the spectral density as
ΦH(s): = H(s) + H>(–s). In addition, for sake of completeness and to characterize a pH system,
we refer the reader to Definitions 2.1, 2.2 and 2.3 fromBenner et al. (2020).

2. The Maxwell system as a port-Hamiltonian system
The objective of this section is to recall how Maxwell’s equations of electromagnetism can
be recast into the pH formalism (Farle et al., 2013; Payen et al., 2020; Haine et al., 2022).

Let Ω be a bounded connected set. The Hamiltonian of the system under consideration is
the total electromagnetic energy, given by:

H D; Bð Þ := 1
2

ð
Ω

D � D
ϵ xð Þ +

B � B
μ xð Þ

� �
: (2)

Electric and magnetic inductionsD andB are chosen as energy variables; then computing the
variational derivatives of the HamiltonianH with respect to them, the electric and magnetic
fields:

E := δDH; and H := δBH; (3)

naturally appear as co-energy variables.
The constitutive laws linking them involve the electric permittivity ϵ(x) and the magnetic

permeability μ(x), and read:
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D= ϵ xð ÞE; and B= μ xð ÞH: (4)

With these notations at hand, the two dynamical Maxwell’s equation (known as Maxwell-
Ampère andMaxwell-Faraday) can be written as:

∂tD= curlH− J;

∂tB= − curlE:

(
(5)

Moreover, J stands for the total inner distributed current: Ohm’s law states that J = σE, with
σ(x) the conductivity, responsible of the so-called Joule’s effect.

Remark 1. In this work, we do not consider the two other static equations explicitly,
namely Maxwell-Gauß divD = ρ in presence of a charge density ρ, or Maxwell-flux divB = 0.
Both these equations add algebraic constraints on the solutions which should be taken in
account; nevertheless, if the initial data fulfill these constraints, they will be satisfied along
the solutions of the infinite-dimensional dynamical system, see e.g., Weiss and Staffans
(2013).

Using definition (2), dynamic equations (5) and Stokes identity, one can compute the
electromagnetic power as follows:

dH
dt

=
ð
Ω
E � ∂tD+H � ∂tB;

=
ð
Ω
E � curlH−H � curlEð Þ−

ð
Ω
E � J;

= −
ð
Ω
div E∧Hð Þ−

ð
Ω
E � J;

= −
ð
∂Ω

γ E∧Hð Þ� �
� n−

ð
Ω
E � J;

where γ is theDirichlet trace operator and n is the outward normal vector to the boundary ∂Ω.
Making use of Π := γ E∧Hð Þ, the so-called Poynting vector, defined on the boundary ∂Ω,

it reads:

dH
dt

= −
ð
∂Ω
Π � n−

ð
Ω
E � J: (6)

Thus, the loss of electromagnetic energy comes from the flux of the Poynting vector
across the boundary ∂Ω, and the distributed power in the domain Ω, with density E�J = σ–
1‖J‖2 = σ‖E‖2 ≥ 0, which is actually Joule’s effect; this energy is lost in the thermal
domain.

Regarding the boundary terms, and in particular the choice of the collocated boundary
control u and observation y, there are several possible choices. The admissibility condition
for such choices is that

Ð
∂Ωu � y= −

Ð
∂ΩΠ � n.

As main example, we shall concentrate on the 2DMaxwell’s equation on a 2Dwaveguide
for sake of simplicity. In that case, Ω is a rectangle in ℝ2, yielding a transverse electric (TE)
formulation ofMaxwell’s equations, which reads:
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∂tD = grad⊥Hz − J;

∂tBz = − curl2DE;

(
(7)

with, see e.g. (Assous et al., 2018, § 9.2):

grad⊥Hz :=
∂yHz

−∂xHz

24 35=Θ gradHz;

curl2DE := ∂xEy −∂yEx =div2D Θ aEð Þ;
whereΘ is the rotation of angle − π

2 rad [4].

Using as scalar boundary collocated control and observation:

u∂ :=E � t and y∂ := −Hz; (8)

where t: =Θ>n is the tangent vector to ∂Ω. Then, we get the following power balance for the
TE 2DMaxwell lossy pH system (7):

d
dt
H= −

ð
Ω
E � σE+

ð
∂Ω
u∂y∂ ≤

ð
∂Ω
u∂y∂: (9)

3. High fidelity model: a mixed finite element method
To discretize the system (7)–(8) in space, the partitioned finite element method (PFEM) is
used, see Cardoso-Ribeiro et al. (2021). This method is a particular instance of the robust and
well-known mixed finite element method, see Monk (2003), allowing for the discretization
of the distributed port-Hamiltonian system into a finite-dimensional port-Hamiltonian
system, i.e. in a structure-preservingway. The method boils down to three steps:

(1) write a weak formulation of the problem;

(2) use Stokes’ identity on a partition of the system; and

(3) project on finite sets using finite elements.

Consider systems (7)–(8), multiply by test functions (namely the scalar-valued φ and the
vector-valued φ defined inΩ, and the scalar-valued ψ defined on ∂Ω), and integrate overΩ:ð

Ω
∂tD � φ=

ð
Ω
grad⊥Hz � φ−

ð
Ω
J � φ;ð

Ω
∂tBzφ= −

ð
Ω
curl2DEφ;ð

∂Ω
y∂ψ = −

ð
∂Ω
Hzψ:

8>>>>>>>><>>>>>>>>:
Performing an integration by parts on the second line and substituting the constitutive
relations (4) and Ohm’s law J = σ(x)E (i.e. considering the co-energy formulation) lead to the
variational formulation:
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ð
Ω

ϵ xð Þ∂tE � φ=
ð
Ω

grad⊥Hz � φ−
ð
Ω

σ xð ÞE � φ;

ð
Ω

μ xð Þ∂tHzφ= −
ð
Ω

E � grad⊥φ−
ð
∂Ω

u∂φ;

ð
∂Ω

y∂ψ = −
ð
∂Ω

Hzψ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
(10)

Assume now that you have access to three finite element families φi
� �

1≤ i≤NE
, φk
� �

1≤ k≤NH
,

and ψmð Þ1≤m≤N∂
to discretize respectively E, Hz and the boundary variables: u∂ and y∂. This

consists in considering the discrete quantities:

E t; xð Þ≃Ed t; xð Þ : = ∑
NE

i = 1
Ei tð Þφi xð Þ;  8t≥ 0; x 2 Ω;

Hz t; xð Þ≃Hd
z t; xð Þ := ∑

NH

k= 1
Hk

z tð Þφk xð Þ;  8t≥ 0; x 2 Ω;

u∂ t; sð Þ≃ ud∂ t; sð Þ := ∑
N∂

m= 1
um∂ tð Þψm sð Þ;  8t≥ 0; s 2 ∂Ω;

and:

y∂ t; sð Þ≃ yd∂ t; sð Þ := ∑
N∂

m= 1
ym∂ tð Þψm sð Þ;  8t≥ 0; s 2 ∂Ω:

Substituting them into (10), and considering only the finite element functions as test
functions leads to the finite-dimensional linear system:

ME 0 0

0 MH 0

0 0 M∂

266664
377775

_E tð Þ

_Hz tð Þ

− y∂ tð Þ

0BBBBB@

1CCCCCA=

−Rσ D 0

−D a 0 −T

0 T a 0

266664
377775

E— tð Þ

Hz― tð Þ

u∂— tð Þ

0BBBBB@

1CCCCCA; (11)

where the underlined quantities represent the vector of coefficients of an approximation in
the appropriate finite element family, e.g. E— tð Þ= Ei tð Þ� �

1≤ i≤NE
and so forth, and the matrices

are defined as follows:

MEð Þij :=
ð
Ω
φ j � ϵ xð Þφi 2 RNE ×NE;   MHð Þkℓ :=

ð
Ω
φℓμ xð Þφk 2 RNH ×NH;

M∂ð Þmn :=
ð
∂Ω
ψnψm 2 RN∂ ×N∂;   Rσð Þij :=

ð
Ω
φ j � σ xð Þφi 2 RNE ×NE;

Dð Þiℓ :=
ð
Ω

grad⊥φℓ
� �

� φi 2 RNE ×NH;   Tð Þkn :=
ð
∂Ω
ψnγ φnð Þ 2 RNH ×N∂ :
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Equivalently, equation (11) may be easily written under the pH form (1c), more precisely by
denoting n = NE + NH, m =N∂ (later in §4, m will denote both the size of inputs and outputs)
and setting:

x :=
—E

—Hz

0@ 1A 2 Rn;  M :=
ME 0

0 MH

24 35 2 Rn× n;  J :=
0 D

−D a 0

24 35 2 Rn× n; (12)

and:

R :=
Rσ 0

0 0

" #
2 Rn× n;  G :=

0

− TM − 1
∂

" #
2 Rn×m; P := 0n;m; N =S := 0m;m; Q := In; (13)

together with u :=u∂— and y :=y∂—
.

Let us define the discrete HamiltonianHd as the evaluation of the continuous Hamiltonian
H given by (2) in the approximated co-energy variables Ed and Hd

z . First, we rewrite the
continuous HamiltonianH as a function of the co-energy variables:

H D; Bzð Þ := 1
2

ð
Ω

D � D
ϵ xð Þ +

Bzð Þ2
μ xð Þ

 !
;

=
1
2

ð
Ω

E � ϵ xð ÞE+ μ xð Þ Hzð Þ2
	 


;

which easily gives, using the finite element approximations:

Hd E; Hzð Þ : =H Ed; Hd
z

	 

;

=
1
2

ð
Ω

Ed � ϵ xð ÞEd + μ xð Þ Hd
z

	 
2� �
;

=
1
2

E a

—ME E—
+Hz

a

—MH Hz
—

	 

:

Then, the power balance reads, at the discrete level:

d
dt
Hd = − E—

aRσ E—
+ y∂—

aM∂ u∂
—

≤ y∂—

aM∂ u∂
—
: (14)

meaning that the open dynamical system is lossy. Note how it perfectly reproduces the
continuous behavior (9). The proof essentially relies on both the symmetric positive-definite
matrix on the left of (11) and the skew-symmetric matrix on the right of (11) (multiply both

sides of (11) from the left by E—

a

; Hz—

a; u∂—

a

� �
and conclude).

4. Low complexity model in the Loewner framework
Encompassing the large amount (n = NE + NH) of variables of the high fidelity linear
model, constructed in § 3, with a low complexity one, is the purpose of model
approximation and reduction research field. One objective of constructing low order
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models is to be able to use them in place of the original one for many-query model-based
processes such as prediction, health monitoring, control and observer design, analysis.
Such an investigation domain is obviously very large, and interested reader may refer to
the overview papers Benner et al. (2015), Gosea et al. (2022) and book from Antoulas
et al. (2020) for details and references. A standard classification of the model
approximation approaches considers either intrusive or non-intrusive methods. The
former requires the model to be accessible while the latter (used-here) only input-output
data. In this section, the Loewner Framework (LF) and its extension to passive property
(and pH structure) preservation is first recalled. Then, as the original system realization
is available, we provide also a projector allowing to recover the original pH-FOM states
directly from the time-domain simulation of the simple pH-ROM.

This reduction method stands out particularly because, in addition to guaranteeing
the preservation of the geometric structure and the passivity property, the internal
energy and power terms of the ROM can be determined solely from state
measurements. This advantage provides a great insight into the obtained pH-ROM for
analyzing its reliability. Moreover, it allows us to retrieve key interest quantities of the
initial model.

4.1 Loewner framework
We first describe the classical LF as exposed inMayo and Antoulas (2007) and Antoulas et al.
(2016), as a procedure for building time invariant differential algebraic ROM in the form (1a).
Then, its adaptation by Benner et al. (2020) to construct a pH-ROM of the form (1c), is
recalled.

4.1.1 Interpolation via the tangential approach. The nonintrusive LF, introduced in
Mayo and Antoulas (2007), offers tools for the reduction, approximation and identification
of dynamical systems based on frequency-domain data. Let us denote as the right and left
data the following sets (where j = 1,…, k and i = 1,…, q):

fλj; rj; wjg; and fμi; l a

i ; v

a

i g; (15)

where λj [ C and μi [ C are the right and left interpolation points. Then, rj [ Cm×1 and

l a

i 2 C1×m are the right and left tangential directions. Both points and directions lead to the

right H(λj)rj = wj [ Cm×1 and left l a

i H μið Þ= v a

i 2 C1×m tangential responses. Let H(sk)
denote the evaluation of the high dimensional pH-FOM at point sk [C. Based on the data sets
(15), the LF seeks for a realization Σ : bE; bA; bB; bC; 0m� �

, whose transfer function bH sð Þ
satisfies tangential interpolatory conditions bH λjð Þrj =wj and l a

i
bH μið Þ= v a

i . By using the
matrix formulation, the right data read:

Λ = diag λ1; …; λk½ � 2 Ck × k;

R = r1 r2 … rk
� � 2 Cm×k;

W = w1 w2 … wk
� � 2 Cm×k;

8>>><>>>: (16)

and the left data read:
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M = diag μ1; …; μq½ � 2 Cq× q;

L a = l1 l2 … lq
� � 2 Cm×q;

V a = v1 v2 … vq
� � 2 Cm×q:

8>>><>>>: (17)

Defining the (i, j) -th entry of the Loewner and shifted Loewner matrices with dimension
q × k, as:

Lð Þij = v a

i rj − l a

i wj

μi − λj
; and Mð Þij = μiv a

i rj − l a

i wjλj
μi − λj

; (18)

the resulting system realization bΣ : bE; bA; bB; bC; 0m� �
= −L; −M; V; W; 0mð Þwhich transfer

function bH sð Þ=W M− sLð Þ− 1V (tangentially) interpolates the data. Importantly, if the data
have been generated by a linear rational model and in the case where too many data are
available, both the minimal realization order r and McMillan degree ν of the generating
system can be obtained. More specifically, Vξ [ CΛ, r = rank(ξL – M) = rank([L, M]) =
rank([LH, MH]H), and ν = rank(L). Let Y [ Cq×r (resp. X [ Ck×r) be the matrix containing
the first r left (resp. right) singular vectors of [L, M] (resp. [LH, MH]H). Then,bΣr : bEr; bAr; bBr; bCr; 0m

� �
where:

bEr =YHbEX; bAr =YHbAX; bBr =YHbB and bCr =CX; (19)

is a minimal realization that interpolates the data (15). Note that r may be automatically
selected by the rank revealing factorization of the LF or be chosen smaller to obtain a simpler
function, at the price of a loss of accuracy.

Remark 2. (About the interpolation points and tangential directions). It may be helpful to
point out some practical consideration and specificity of the LF:

• The right data λj add columns while the left μi add rows in the L and M matrices
(18). It is generally preferred to have a similar number of rows and columns (i.e. k =
q = N). If not equal, rectangular matrices may be constructed. After the SVD and
projection, square matrices of dimension r are obtained, where r is the rank of the
Loewner pencil.

• The left and right points distribution have no impact on the obtained model. For
numerical reasons, it is commonly admitted to alternate them. More specifically,
assuming k = q = N, if the data of the original model are evaluated at {s1, s2,…, s2N}
[ C, a typical choice for left and right interpolation points is the following
(interlacing): λ1,2,…,k = {s1, s3, s5,…, s2N–1} and μ1,2,…,q = {s2, s4, s6,…, s2N}.

• The interpolation points {s1, s2,…, s2N} may be any point in the complex domain. In
practical applications, they are usually collected from frequency response evaluation
resulting in interpolation points along the imaginary axis. Therefore, we usually deal
with a complex set {s1, s2, …, s2N} with pure imaginary values only. Then, complex
conjugation permit (i) to double the information and (ii) to reconstruct real-valued
matrices [see later (29) and (30)].

• The tangential directions r a

j (resp. li) may be any complex vectors. Here we suggest to
take the right (resp. left) largest singular vector associated the evaluation of the m × m
model at λj (resp. μi). As the interpolation points, they are closed by conjugation.
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Remark 3. (Number of interpolation points). Note that the number of ports dictates the
number m ×m of inputs / outputs for the considered dynamical system. It is generally
admitted that the number r of internal variables (or states) needed to catch the dynamics is r ≥
m2. This indicates that at least each transfer has its own dynamics. However, this is not
always the case and it depends on the involved physics. The strength of the LF used in this
work relies on the minimal realization result [see Antoulas et al. (2016) for details, and §5].
4.1.2 Enforcing passivity in the interpolation. In the above presented LF, interpolation is
guaranteed while the passivity property may not (indeed, when compression is applied
during the SVD step, it is likely to be lost). Authors in Benner et al. (2020) provide a solution

to this limitation by first using the ROM bΣr to estimate the associated spectral zeros and
directions pairs, denoted (ξj, xj) such that ΦbHr

ξj
� �

xj = 0. This pair is computed by solving

the following low order generalized eigenvalue problem:

0 bAr bBr

bA a

r 0 bC a

r

bB a

r
bCr D+D a

26666664

37777775
pj

qj

xj

0BBBB@
1CCCCA= ξj

0 bEr 0

− bE a
r 0 0

0 0 0

2666664

3777775
pj

qj

xj

0BBBB@
1CCCCA; (20)

which has r zeros in the open right half-plane, r zeros in the open left half-plane and has no
zeros on the imaginary axis. Now by selecting the right and left strictly passive data data as
(i, j = 1,…, r = k = q, λj← ξj and rj← xi):

fλj; rj; wjg  and  f− λi; rHi ; −wH
i g; (21)

one gets,M = – ΛH, L =R and V = –WH. By construction, one obtains HermitianL [Cr×r and
a skew symmetricM [Cr×rmatrices (18). By setting,H(∞) =D (which may be estimated by
measuring in very high frequency if not accessible), one recovers an m ×m passive

realization bΣp = −L; −M; −WH; W; 0m
� �

:= bEp; bAp; bBp; bCp; 0m

	 

. As L � 0, one may

apply the Cholesky decompositionL = T>T (and the Loewner matrix can easily be inverted).

Then the normalized pH-ROM is obtained as bΣn�pH := Ir; TbApT − 1; TbBp; bCpT − 1; D
	 


(Mehrmann and Van Dooren, 2020; Benner et al., 2020), with form (1b). Defining:

S :=
−TbApT − 1 − TbBpbCpT − 1 D

24 35; (22)

one obtains the equivalent pH-ROMof the form (1c) by identifying:

− J −G

G a N

" #
:=

S− S a

2
;   and  

R P

P a S

" #
:=

S+S a

2
; (23)

which now leads to the r-th order normalized pH-ROM shortly denoted bΣpH in the form (1c).
Remark 4. (About spectral zeros interpolation). Notice that the spectral zeros embed the

passivity property. One manner to preserve passivity is then by interpolation along spectral
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zeros and directions. In Poussot-Vassal et al. (2023), a procedure ensuring stability and
avoiding numerical issues is detailed.

4.2 The interest in having a port-Hamiltonian reduced-order model

The r-th order pH-ROM bΣpH in the form (1c), is am ×mMIMOmodel that captures well the

behaviors of the pH-FOM (in a non-intrusive manner). Moreover, as bΣpH is normalized, the r
internal variables allow for the reconstruction of energy and power terms of the ROM,
mirroring those of the original full-order model. These terms are computed as follows:

Hamiltonian or internal energy : Er tð Þ= bxr tð Þ abxr tð Þ;
Internal dissipated power :bxr tð Þ a J −Rð Þbxr tð Þ= − bxr tð Þ aRbxr tð Þ;
Exchange power : u tð Þ aby tð Þ: (24)

These considerations will be explored in §5, and illustrated on Figure 6.

4.3 Associated projectors
In addition, an interesting property rarely exploited in model reduction works, concerns the
Loewner projectors, constructed with the FOM knowledge, and the considered interpolations
points (λj, μi) and directions (rj, lj). Thanks to these quantities, it is possible to reconstruct
(approximate) the pH-FOM internal variables on the basis of the pH-ROM ones thanks to the
lifting operator:

x tð Þ=Vbxr tð Þ; (25)

where bxr tð Þ and x(t) are the internal state variables of the pH-ROM and pH-FOM,
respectively. Then, the V [ ℝn×r matrix is the so-called lifting projector, defined in what
follows. From the Loewner theory, see Antoulas et al. (2016), the Loewner and shifted
Loewner matrices satisfy:

OER=L and OAR=M; (26)

where the generalized observably and reachability matrices read (by considering that the
interpolation points and directions are closed by conjugation):

R=

r a

1 B

a λ1E−Að Þ− a

rT1B

a λ1E−A
� �− a

⋮

r a

k=2B

a λk=2E−A
� �− a

rk=2B a λk=2E−A
	 
− a

2666666666664

3777777777775
and O=

l1C μ1E−Að Þ− 1

l1C μ1E−Að Þ− 1

⋮

lq=2C μq=2E−A
� �− 1

lq=2C μq=2E−A
� �− 1

266666666664

377777777775
: (27)

The above relationmeans that the shifted Loewner and Loewner matrices are projection of the
A and E matrices onto the generalized observability and reachability spaces. Then, asR and
O are complex but closed by conjugation, the following equality holds true (for q = k = r):
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Y aJHOð Þ a

E RJXð Þ= L;

Y aJHOð Þ a

A RJXð Þ= M;
(28)

where:

J0 =
1ffiffiffi
2

p
1 ı

1 − ı

" #
and J = Ik=2 � J0 � Imð Þ; (29)

and where:

eYΣX =SVD
M

L

" #
  and  YΣeX =SVD M L

� �
: (30)

Then, we define the projectors as:

W =Y aJHO and V =RJX: (31)

The V [ ℝn×r will serve in (25) to lift the pH-ROM states up to the pH-FOM (refer to §5 for
illustrations).

Remark 5. (About numerical improvements). Once the equivalent projecting matrices (31)
have been obtained, it may also be interesting to improve the numerical conditioning. This is
possible e.g. by applying the balanced transformation on the normalized pH model. Then, the
projectors read [where TR [ ℝr×r and TL [ ℝr×r denote the right and left projectors of the
balancing, seeAntoulas et al. (2016)]:

W =TRY aJHO; and V =RJXTL; (32)

and ensure W>EV =L andW>AV =M.

5. Test case: a waveguide
This section aims to demonstrate the effectiveness of the above method in handling complex
material properties. Therefore, in Figure 2, we consider a waveguide composed of three regions
structured as follows: the first region is empty space with ϵ1 = 1, μ1 = 1 and σ1 = 0, the second
region contains a material with conductivity, i.e. ϵ2 = 5, μ2 = 1 and σ2 = 5, and the third region is
again the same empty space. Note that these parameters are not physically speaking since the
system has been a-dimensioned. The complexity of the waveguide arises from the discontinuous

Figure 2. Geometry of the waveguide under consideration
Source:Authors’ own work
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physical properties at the interfaces between the regions. These discontinuities lead to abrupt
changes in the electromagnetic field behavior, making the analysis and simulation of the
waveguide more challenging. For simplicity sake, in the study the empty space electromagnetic
properties are normalized to one. This consideration results in analyzing model responses on a
normalized frequency axis.

For this test case, we have chosen a simulation domain with reasonable dimensionsΩ = [0, 1] ×
[0, 0.1]. As will be seen later, this choice of domain already results in a full-order model with
significant dimensions. On the top and bottom boundaries (Γ1), a zero electric field is imposed as
boundary condition. The left and right boundaries (Γ2 = ΓL| ΓR) will be the collocated inputs and
outputs. Here, the control is chosen to be the tangent component of the electricfield to the boundary
Γ2. Thus, the collocated observation is necessarily – Hz on Γ2, in accordance with the port-
Hamiltonian formalism presented § 2. Equations (33) display thefinal formulation:

∂
∂t

ϵE

μHz

0@ 1A= J −Rð Þ
E

Hz

0@ 1A; onΩ;

E � t= 0; onΓ1;

E � t=u∂; onΓ2 =ΓL [ ΓR;

y∂ = −Hz; onΓ2 =ΓL [ ΓR:

8>>>>>>>>><>>>>>>>>>:
(33)

The finite element implementation and the time simulation of the FOM were conducted
using the SCRIMP (Simulation and Control of Interactions in Multi-Physics) library, see
Ferraro et al. (2024), which is specifically designed for port-Hamiltonian systems. Numerous
examples are available on the SCRIMP web page https://g-haine.github.io/scrimp/. One of
the main advantages of this library is its ability to track the Hamiltonian terms over time. The
finite element families used for the FOM are as follows:

• vectorial Discontinuous Galerkin of order 1 for E;
• scalar Continuous Galerkin of order 2 for Hz; and
• scalar Discontinuous Galerkin of order 1 for both u∂ and y∂ at the boundary.

These choices have been made in accordance with the matrices of (11). Indeed, only the D
and T matrices involve operators that need φ to belong at least to H1(Ω), respectively grad⊥

and γ. Furthermore, it is well-known that the gradient of Continuous Galerkin elements of
order k is mapped to vectorial Discontinuous Galerkin elements of order k – 1, which ensures
an optimal compatibility, see Haine et al. (2023) for details.

Figure 3 presents the results obtained with a Gaussian pulse wave injected at the left
boundary of the domain. As power is introduced into the system (pink curve), the
electromagnetic energy increases in the domain (dark green curve). When the injected wave
reaches the second material, fluctuations appear on the electric and magnetic terms.
Additionally, the total electromagnetic energy gradually decreases due to the Joule effect
caused by the non-zero conductivity of second material. This phenomenon is also modeled

by the plot of the damping term

ðT
0
− E— tð Þ aRσE— tð Þdt (light grey curve). Finally, the power-

balance equation remains at zero throughout the simulation, thereby validating equation (14)
(light green curve).
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5.1 Computation of the reduced-order models
As presented in § 4, obtaining reduced-order models is of great value. However, we aim to
preserve the port-Hamiltonian formalism throughout the process. The finite element model
obtained above stands for FOM. As Loewner framework is based on frequency interpolation,
we need to compute frequency response of the FOM. To do this, the transfer function of the
FOM is constructed by performing a Laplace transformation of (12)–(13):

H sð Þ=G a sM− J −Rð Þð Þ− 1G:

The state and ports dimension of the FOM is n= 733 m = 8 for a large mesh size. Then, 500
evaluation of the FOM are computed, as follows:

fω1; ω2; …; ω500g=logscale 10− 3; 101
� �

fλ1; λ1; λ2; λ2; …; λ250; λ250g= ıfω1; ω1; ω3; ω3; …; ω499; ω499g
fμ1; μ1; μ2; μ2; …; μ250; μ250g= ıfω2; ω2; ω4; ω4; …; ω500; ω500g;

leading to a tangential Loewner interpolant of size r = 21 after reduction. However, this ROM is
not passive, thus preventing its transformation in the pH structure. Passivity of the interpolant
can be enforced, following Benner et al. (2020) procedure recalled in § 4. The main idea of the
method is to use spectral zeros as interpolating points. Nevertheless, this algorithm works only
for strictly passive systems that allow an easy selection of positive spectral zeros.

In our case, due to the complexity and significant size of finite models, some numerical
issues prevent us from directly using this method. Indeed, the computation of spectral zeros
is challenging for large systems. Moreover, our systems are non-strictly passive due to weak

Figure 3. Evolution of the terms of the Hamiltonian in plain lines [electric energy (blue), magnetic
energy (orange), electromagnetic energy (green), right boundary control (purple), left boundary control

(pink), damping (gray) and power balance in dashed line (yellow)]
Source:Authors’ own work
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damping, thus spectral zeros can be found close to the imaginary axis. To solve these
numerical problems, the algorithm in Poussot-Vassal et al. (2023) suggests shifting the
measured data using the D matrix of the state-space formulation (interested reader is invited
to refer to §II.C of this article). In SISO, the effect of this operation is easy to observe. It
consists of translating the Nyquist plot to the right part of the domain to enforce strict
passivity. Once a passive ROM is identified that fits the shifted data, we just need to shift it
back to make it fit the initial model.

In practice, a sensitivity analysis has been conducted on the D term, since this parameter
influences the number of numerically computed spectral zeros. If any are missed during
computation, critical information can be lost and the final solution will not accurately reflect
the behavior of the full-order model (FOM). For this particular case, the optimal D term
value is around 10–2.

We end up with two reduced order models: bΣ and bΣpH of size r = 21, because bΣpH is
computed from positive spectral zeros of bΣ, which are exactly r = 21 thanks to the shift action.
The resulting ROMs are therefore almost 35 times smaller than the FOM. Figure 4 shows the
frequency responses of the two computed ROMs. Due to space limitation, we only show
the magnitude of two transfer functions relating the mean left and right outputs (YL and YR) to the
mean right and left inputs (UL andUR). As expected, the two ROM responses are close to the one
of full ordermodel near the frequencies selected from the interpolated data and spectral zeros.

The fact that our ROMs do not match the high-frequency FOM response is not necessarily
a problem. It is important to think about the measurement frequency range we use for the
interpolation. Indeed, our finite element model will not be able to capture very high frequency
behavior. This limitation is due to the inherent limitations of the finite element method and the
discretization used in our model. High frequency signals have shorter wavelengths that
require finer meshes to accurately capture their behavior. In the next part, the effect of this
partial matching on the frequency responses is shown on a time-domain simulation.

Figure 4. Magnitude Bode diagram of the FOM ∑, Loewner ROM bΣ and pH-ROM bΣpH with selected
interpolated data V|W

Source:Authors’ own work
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5.2 Simulation results in the time domain
Figure 5 shows the evolution of the outputs of three models in response to a sinusoidal wave
injected at the left boundary of the domain. The time required to compute the solution using
the FOM is 59.57 s, whereas the ROMs calculate the solution in just 0.67 s. This results in a
significant speedup, with the ROMs being approximately 89 times faster than the FOM. This
substantial reduction in computation time highlights the efficiency of the ROMs, making
them highly advantageous for scenarios where rapid simulations are essential without
sacrificing too much accuracy.

The evolution of the output YL on the left boundary ΓL is accurately captured by both
ROMs, as it corresponds to the collocated output of UL, which is less complex to model. For
the output YR measured on the right boundary ΓR, the FOM accurately reflects the delay
caused by wave propagation along the waveguide. However, this delay is not well captured
by the ROMs due to the truncation of high-frequency components during the reduction
process. However, increasing the ROM order may improve this, at the price of a more
complex model.

The mean normalized error for bΣ is 0.0857, while for bΣpH it is 0.0905 (the error has been
normalized to the maximum output value). These errors remain low, which validates the
time-domain behavior of both ROMs. It is important to note that the characteristics of the
injected signal significantly influences the output shapes. Inputs with sharp transitions or
high-frequency components can introduce considerable numerical noise, potentially
affecting the accuracy of the model predictions. Therefore, while the ROMs perform well
under the current conditions, care must be taken when applying these models to more
complex input signals, as they may lead to less accurate results due to the presence of
unresolved high-frequency behavior. This is to be studied in future works.

One of the main advantages of the port-Hamiltonian formalism is its ability to track the
evolution of the Hamiltonian, which, in this context, represents the internal electromagnetic

Figure 5. Time-domain responses for sinusoidal input at left boundary of the domain. On the bottom
right frame, the delay is not well captured by the rational form, but may be improved by increasing the

order r
Source:Authors’ own work
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energy. Additionally, it allows for the straightforward plotting of exchange power, internal
damping, and power balance check equations. Equation (9) shows the method for calculating
these terms for the FOM. For bΣpH, since it is represented as a normalized port-Hamiltonian
system, these terms can be easily calculated as described at the beginning of §4.3. Figure 6
displays these curves for both the FOM and the port-Hamiltonian pH-ROM (bΣpH). The power
balance equation is satisfied for both models, with the exchange power terms showing good
agreement. However, there are differences in the damping terms which affect the rate of decrease
of the electromagnetic energy. In particular, the pH-ROM appears to be less dissipative than the
FOM. This is a direction to be investigated as it might be induced by the time integration scheme.

Remark 6. (Time-domain). All variables used in the simulation are a-dimensioned. Therefore
in all above simulations, neither the rad/s nor time duration have a specific meaning.

5.3 Projection of the reduced state on the mesh
Following §4.3, projectors can be computed to project the solutions of the ROM states onto
the original mesh. This powerful approach provides a more detailed understanding of the
internal behavior of the ROMs, allowing for a closer examination of how well they capture
the dynamics of the full-order model. Figure 7 shows the internal state evolution of the FOM
and the reconstructed state of the pH-ROM. The propagation behavior is well reconstructed
by the pH-ROM even after many time steps, as can be seen on Figure 7c. Indeed, pH-ROM
effectively captures both reflection and transmission phenomena at interfaces.

Once again, we choose to normalize the error at time t by the highest value of the magnetic
field at the same time, because H converges to zero. In the center of the waveguide, the error
remains small, but reconstruction at the left and right boundaries is more problematic, with
significant differences appearing. Nevertheless, we saw in Figure 5 that the opposite of the
magnetic field as output of the system is well fitted by bΣpH. It is therefore possible to replace
the magnetic field value reconstructed with projectors by the one calculated by bΣpH, allowing
better reconstruction of the field.

Figure 6. Hamiltonian, energy terms and power balance of the FOM and pH-ROM (bΣpH)
Source:Authors’ own work
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In this section, we have chosen the smallest possible model to demonstrate the power of
model reduction. This choice is associated with limited accuracy because, as mentioned
above, the high frequency behavior has been truncated. Better accuracy can be achieved with
a larger model. For example, Figure 1 displays the reconstructed magnetic and electric fields
obtained with a ROM twice as large, of dimension r = 55.

Figure 7. Results of the reconstruction of the reduced state on the initial mesh, comparison with time
response of the FOM. At each time step, the top subplot represents theHz field in black for the FOM and

in colors for the pH-ROM (r = 21), and the bottom subplot is the relative error on theHz field
Note(s): (a) At time step 401; (b) at time step 900; (c) at time step 1350

Source:Authors’ own work
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6. Conclusion and outlook
This work presented a systematic approach to the modeling and order reduction of the 2D
Maxwell equations within a port-Hamiltonian framework. We demonstrated that the
Loewner method effectively reduces simulation complexity, while preserving the intrinsic
structure of port-Hamiltonian systems. The simulation results showed that the obtained
reduced-order models faithfully reproduce the input-output system; furthermore the dynamic
behavior of the full-order model is recovered thanks to a specific lifting operator, resulting in
a significant reduction in computational time.

The importance of preserving the port-Hamiltonian structure throughout the three
steps of modeling, discretization, and reduction has been demonstrated, as this structure
allows the easy computation of essential power terms, providing a great understanding
of the computed models from an energy perspective. Moreover, the passivity property
that naturally comes with the structure is of major interest, as it enables the
implementation of passivity-based controllers (not treated here), robust to high
uncertainties and perturbations. In addition, natural Lyapunov functions proving the
exponential stability of a port-Hamiltonian system can be simply derived from its state
and its Hamiltonian. Consequently, the port-Hamiltonian theory provides a perfect
framework for the control of continuous domain and complex phenoma.

To summarize, along with a method to compute a pH-ROM from PDEs, essential tools
have been proposed in this work to take full advantage of a pH-reduced order model, offering
a deep understanding of the initial full order model, such as frequency response, time
response, energy and power term computation, and reconstruction of the response on the
initial mesh.

Future perspectives include applying this methodology to more complex electromagnetic
system configurations, which would be an interesting step forward to validate and extend this
approach in practical applications such as those coming from multiport array antennas.
Addressing the parametrized 3D case represents an important challenge for real-life
applications; to fully address this case, numerical issues would need to be treated, including

Figure 7. Continued
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the evaluation of the frequency-domain response evaluation, the data storage and the
potential high number of ports. A thorough exploration of dedicated techniques to enhance
the passivity and transport delay accuracy of ROMs also in the high-frequency band would
also be beneficial, following e.g. Toledo-Zucco et al. (2024a).

Notes

1. This work has been supported by the AID (Agence de l’Innovation de Défense) from the French
Ministry of the Armed Forces (Ministère des Armées).

2. see https://g-haine.github.io/scrimp/.

3. Here Ʌ denotes the singularities being the eigenvalues of (A, E) pencil in (1a), of A in (1b) and of
((J – R)Q,M) in (1c).

4. Note that both these adjoint operators do also naturally come into play in the case of the 2D
incompressible Navier-Stokes equations written as a pHs with vorticity as energy variable, see
Haine and Matignon (2021) and Cardoso-Ribeiro et al. (2024).
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