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Abstract. In this work, we present a novel data-driven method for identifying parametric MIMO generalized
state-space or descriptor systems of low order that accurately capture the frequency and time domain
behavior of large-scale linear dynamical systems. The low-order parametric descriptor systems are
identified from transfer matrix samples by means of two-variable Lagrange rational matrix interpo-
lation. This is done within the Loewner framework by deploying the new matrix-valued barycentric
formula given in both right and left polynomial matrix fraction forms, which enables the construc-
tion of minimal parametric descriptor systems with rectangular transfer matrices. The developed
method allows the reduction of order and parameter dependence complexity of the constructed sys-
tem. Stability of the system is preserved by the postprocessing technique based on flipping signs of
unstable poles. The developed methodology is illustrated with a few academic examples and applied
to low-order parametric state-space identification of an aerodynamic system.
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1. Introduction. Many engineering applications require repeated simulation and evalu-
ation of the dynamical systems which describe physical phenomena of interest. Therefore,
these systems should be computationally efficient and require small storage space. Commonly
used models in control engineering are the linear time-invariant (LTI) state-space systems
given in the time domain. For many control design purposes, these systems should be of low
order, parametric (that is, cover the range of parameters on which the associated physical
phenomena depend), and accurate. Additionally, in order to observe and control their dy-
namic behavior, the state-space systems need to be completely observable and controllable
i.e., minimal.

However, physical phenomena are often represented with large-scale linear dynamical
systems which form the state-space systems of high orders. An example of this is the
semidiscretized partial differential equations (PDEs) over fine meshes for fluid flows. Further-
more, some linear representations of the physical phenomena cannot be brought to the state-
space form. Such an example is a representation of an aerodynamic transfer function with a
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nonrational function in the frequency domain. Therefore, for engineering purposes, such as
optimal control design, there is a need for constructing parametric state-space systems of
low orders which accurately capture the behavior of the original models. Optimal control
laws can be used for various engineering purposes, such as load alleviation and flutter sup-
pression in aeronautics. When the state-space description of the large-scale linear system is
known, construction of low-order parametric state-space systems is referred to as the paramet-
ric model-order reduction. If this is not the case, it is referred to as the low-order parametric
system identification.

Various methods based on rational function approximation/interpolation have been devel-
oped with the purpose of constructing the state-space systems from transfer function/matrix
samples of the original linear model. An example of a rational approximation method is
the vector fitting algorithm, while the famous method based on rational interpolation is the
Loewner framework. Vector fitting [14] is an iterative algorithm which constructs a ratio-
nal approximant by fitting sampled data in the least-squares sense, minimizing the l2 norm
between the samples and the approximant. The algorithm is suitable for both single-input-
single-output (SISO) and multiple-input-multiple-output (MIMO) systems. However, good
estimation of the starting poles is needed to achieve good numerical conditioning of the least-
squares problem. Furthermore, the absence of optimization with respect to the number of
poles, which is predefined by the user, can lead to rational approximants that are nonoptimal
in terms of accuracy and order. The vector fitting algorithm has been generalized to handle
parameter-dependent data in [36, 35, 34, 9, 13] by letting residuals and poles of a rational
approximant be parameter-dependent functions. These approaches are, however, inefficient
when dealing with a higher number of parameters. For this purpose, Zanco and Grivet-Talocia
[41, 42, 44] proposed a novel parameterized framework which adopts an approach based on
radial basis functions (RBFs) to capture parametric dependency of the model.

The aforementioned limitations of the vector fitting algorithm can be overcome by using
the Loewner framework [2, 1, 25]. With the Loewner framework, generalized state-space or
descriptor systems are identified from transfer function/matrix measurements by means of
Lagrange rational interpolation. In the nonparametric formulation, this is done by utilizing
the barycentric formula or by constructing the Loewner and shifted Loewner matrices directly
from the sampled data. Both the approaches allow construction of the minimal SISO systems.
However, to guarantee the minimality of MIMO systems, tangential rational interpolation [25]
needs to be deployed. So far, this has been achieved only within the latter approach, which
utilizes the shifted Loewner matrix. In comparison to the vector fitting algorithm, poles of the
rational interpolant follow directly from the sampled data, thus do not need to be initialized,
and the framework allows order reduction of the identified systems with the introduction of
small approximation errors. Various generalizations of the Loewner framework to parametric
formulation have been developed. Two different approaches based on the interpolation of non-
parametric models have been proposed by Yue, Feng, and Benner [40] and Kabir and Khazaka
[19]. The approach in [40] uses the tangential interpolation from [25] and thus is capable of
constructing minimal MIMO realizations, while the approach from [19] deploys the tangential
interpolation in matrix form [39, 18] which does not guarantee the minimality of realizations.
The main drawback of these approaches is that the identification of the nonparametric descrip-
tor systems at each sampled parameter value is required. A single parametric model, which
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3132 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

does not suffer from this limitation, is achieved by means of two-variable Lagrange rational
function interpolation in the method proposed by Antoulas, Ionita, and Lefteriu [4]. This
method utilizes the parameterized barycentric formula and the two-variable Loewner matrix
to find the two-variable rational function which interpolates (or approximates) the sampled
transfer function data. In this SISO formulation, the construction of minimal realizations
is achievable. The method is applied to parametric model-order reduction and generalized
to multiple-parameter case by Ionita and Antoulas [17]. Since it is not understood how to
apply tangential interpolation using the barycentric formula, generalizing this methodology
to achieve a single MIMO parametric model of minimal order is an open question. As a solu-
tion to this problem, Lefteriu, Antoulas, and Ionita [23] suggested an approach based on the
full interpolation/approximation of transfer matrix samples. This approach, however, is for-
mulated for square transfer matrices, and the procedure that suggests achieving minimal, or
close to minimal, state-space models does not hold for arbitrary rectangular transfer matrices.
Generalization of this method to rectangular transfer matrices is the topic of this work. An
algorithm that combines the Loewner framework with the vector fitting approach was pro-
posed by Nakatsukasa, S\`ete, and Trefethen [28] under the name Adaptive Anderson--Antoulas
(AAA) algorithm. The AAA is an iterative algorithm for rational approximation which utilizes
the barycentric formula. Barycentric coefficients are iteratively found such that the interpo-
lation is achieved in chosen support points, while the rest of the data is approximated in the
least-squares sense. Various extensions of the algorithm to multi-input and MIMO systems
are suggested [15, 5, 10, 12, 24]. In particular, block-AAA introduced in [12] uses the matrix-
valued barycentric formula given in the left polynomial matrix fraction form. Surrogate AAA
[10], on the other hand, uses the barycentric formula with matrix-valued numerator (while the
scalar denominator is common for all the entries), and the barycentric coefficients are found
by applying the standard AAA algorithm to a scalar surrogate function. Generalization of the
surrogate AAA algorithm to the parametric framework is presented in [31]. However, these
approaches only address the problem of finding the rational matrix which approximates the
sampled set in the least-squares sense but not its minimal state-space realization.

In addition to matching sampled transfer function/matrix data in the frequency or com-
plex (Laplace) domain, low-order state-space systems need to accurately capture the behavior
of the underlying models in the time domain as well. This implies preservation of dynamic
stability. This is easily achieved within the nonparametric vector fitting algorithm, while for
the parametric framework it is a challenging task. Some solutions to this problem have been
proposed [43, 42, 7]. Unlike the nonparametric vector fitting algorithm, the Loewner frame-
work does not offer stability enforcement. Therefore, a suitable postprocessing technique is
required to model stable dynamical systems. Commonly used stability enforcement techniques
are the stable approximations in the RH2 and RH\infty spaces [21] and the sign flipping of unsta-
ble poles. These techniques are applied to the systems identified by the Loewner framework
and compared in [11]. Accuracy of the stable systems obtained with the approximations in
RH2 and RH\infty spaces is limited since the found systems are optimal with respect to the
identified unstable system, not the original samples. The sign-pole-flipping technique is also
limited in its accuracy. Therefore, Carrera-Retana et al. [8] proposed an improved version
of the sign-pole-flipping technique. This method involves iterative updating of the system's
matrices after the sign flipping of the unstable poles and thus improves the accuracy of the
stable systems.
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3133

In this work, we propose a novel method for the identification of parametric MIMO descrip-
tor systems of low-order from transfer matrix samples, based on the two-variable Lagrange
rational matrix interpolation. This method generalizes the results from [23] to allow the con-
struction of minimal (or close to minimal) state-space models for nonsquare transfer matrices.
To this end, we introduce a new, parameterized matrix-valued barycentric formula in the
right and left polynomial matrix fraction forms. This leads to left and right forms of the
MIMO two-variable Loewner matrix. Just like its SISO counterpart [17], this method allows
construction of a single parametric model rather than multiple nonparametric models which
are then interpolated as in [40, 19, 38]. Furthermore, this formulation offers the possibility of
choosing separate degrees of the two-variable rational matrix which interpolates/approximates
the sampled data in both the complex variable and the parameter variable. Choosing the ap-
propriate form (right or left) of the barycentric formula, based on the shape of the transfer
matrix, and the appropriate low degrees of the rational matrix, enables the construction of
the low-order state-space systems which can be observed and controlled. The constructed
rational interpolant/approximant does not share a common scalar denominator. Thus, if the
proposed realization approach is used, this barycentric formula gives smaller realization or-
ders than the one of [31] for the same degree of rational matrix. A unique feature of the
approach, which is not available in the vector fitting algorithm, is that the appropriate low
degrees of the rational matrix that closely approximates the data are suggested by ranks of
the one-variable Loewner matrices, as noted in [17]. Finding such degrees reduces both the
order of the system (dictated by the degree in the complex variable) and complexity of its
parameter dependence (degree in the parameter variable). We also derive an expression for
the pointwise approximation error matrix. To accurately model the system's behavior in the
time domain, the developed framework is combined with the improved stabilization technique
based on sign flipping of unstable poles [8]. Being data-driven, the proposed methodology
can be used for both parametric model-order reduction and low-order system identification.
However, it is important to mention that, compared to [40, 31], the method requires higher
computational effort which can be prohibitive for large sampled sets and systems with a large
number of inputs and outputs. We demonstrate the application of our method to the low-order
parametric state-space identification of unsteady aerodynamic loads sampled in the frequency
domain. Even though presented for a single parameter, the framework can be extended to
multiple parameters in the same fashion as done in [17] for the SISO case. However, with
the increasing number of parameters, the associated computational cost and storage become
significant challenges. Furthermore, the presented method can be used for other problems
that can be expressed in the same form as the complex domain formulation of LTI systems.
An example of this, as shown in [27, 26], includes the models resulting from discretization of
stationary parametric PDEs.

This work is structured as follows. In section 2, the theoretical background is given and the
research problem stated. Next, an overview of the Loewner framework for both nonparametric
and parametric SISO systems is given in section 3. In section 4, the developed methodology
for MIMO systems is presented, while section 5 covers the stability-preserving postprocessing
technique. Finally, in section 6 the developed framework is presented on a few illustrative
examples and applied to low-order parametric state-space identification of an aerodynamic
system.
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3134 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

2. Theoretical aspects and problem statement. Parametric LTI descriptor (generalized
state-space) system S(p) is given with the set of differential-algebraic equations (DAEs),

(2.1) S(p) :
\bfE (p) \.\bfx (t) =\bfA (p)\bfx (t) +\bfB (p)\bfu (t),

\bfy (t) =\bfC (p)\bfx (t) +\bfD (p)\bfu (t),

where \bfx (t) \in \BbbR k denotes the internal variable of dimension k, \bfu (t) \in \BbbR nu and \bfy (t) \in \BbbR ny are
the input and output vectors of dimension nu and ny, respectively, and \bfA (p),\bfE (p) \in \BbbR k\times k,
\bfB (p) \in \BbbR k\times nu , \bfC (p) \in \BbbR ny\times k, \bfD (p) \in \BbbR ny\times nu are the time-invariant, parameter-dependent
matrices. Matrix \bfE (p) is allowed to be singular. The order of the system S(p) equals the
dimension of the internal variable k. The associated transfer matrix of the system is given as

(2.2) \bfH (s, p) =\bfC (p)(s\bfE (p) - \bfA (p)) - 1\bfB (p) +\bfD (p).

We refer to (2.2) as the transfer matrix if the system has multiple inputs or/and multiple
outputs (nu > 1 or/and ny > 1), while for SISO systems it is referred to as the transfer function
and denoted with H(s, p). Quintuple of matrices (\bfE ,\bfA ,\bfB ,\bfC ,\bfD )(p) is called the generalized
or descriptor realization of \bfH (s, p). We will not distinguish between the descriptor system
and the realization of its transfer matrix/function. In general, transfer matrix \bfH (s, p) is a
rational matrix in the complex variable s with parameter-dependent polynomial coefficients.
In this work, we seek a descriptor system with a transfer matrix that is rational in both s
and p, i.e., two-variable rational matrix. Complexity of a rational matrix is measured by
(McMillan) degree. A two-variable rational matrix has degrees in both s and p, denoted as
n and m. Degree n/m in the complex variable s/parameter variable p is defined as the total
number of poles \rho (p)/\gamma (s) of rational matrix when the parameter variable p/complex variable
s is held fixed. Properness of \bfH (s, p) is also defined in both s and p. For a fixed value of
p, \bfH (s, p) can be strictly proper (lims\rightarrow \infty \bfH (s, p) = \bfzero ), proper (lims\rightarrow \infty \bfH (s, p) = const.) and
improper (lims\rightarrow \infty \bfH (s, p) =\infty ) in the variable s. Properness in the parameter variable p is
defined analogously. The aforementioned properties hold for a two-variable rational function
H(s, p) as well.

In this work, we distinguish between two types of controllability and observability of de-
scriptor systems, namely, R-controllability/observability and C-controllability/observability.

Definition 2.1. Descriptor system (2.1) and the triplet (\bfE ,\bfA ,\bfB )(p) are called controllable
on the reachable set or R-controllable if

(2.3) rank
\bigl[ 
s\bfE (p) - \bfA (p),\bfB (p)

\bigr] 
= k for all finite s\in \BbbC , p\in \BbbC .

Descriptor system (2.1) and the triplet (\bfE ,\bfA ,\bfB )(p) are called completely controllable or C-
controllable if (2.3) holds and

(2.4) rank
\bigl[ 
\bfE (p),\bfB (p)

\bigr] 
= k for all p\in \BbbC .

Definition 2.2. Descriptor system (2.1) and the triplet (\bfE ,\bfA ,\bfC )(p) are called observable
on the reachable set or R-observable if

(2.5) rank

\biggl[ 
s\bfE (p) - \bfA (p)

\bfC (p)

\biggr] 
= k for all finite s\in \BbbC , p\in \BbbC .
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3135

Descriptor system (2.1) and the triplet (\bfE ,\bfA ,\bfC )(p) are called completely observable or C-
observable if (2.5) holds and

(2.6) rank

\biggl[ 
\bfE (p)
\bfC (p)

\biggr] 
= k for all p\in \BbbC .

Realization (\bfE ,\bfA ,\bfB ,\bfC ,\bfD )(p) of \bfH (s, p) (2.2) is minimal if and only if the system (2.1)
is both C-controllable and C-observable. Definitions 2.1 and 2.2 are parametric versions of
the definitions given in [33, 25]. In [25], alternative conditions for C-controllability and C-
observability of the descriptor system are also provided.

For the minimal realizations, the poles \rho (p) of \bfH (s, p) are equal to the generalized ei-
genvalues of matrix pencil (\bfA (p),\bfE (p)) denoted as \Lambda (\bfA (p),\bfE (p)). Descriptor system S(p)
is asymptotically stable if \Lambda (\bfA (p),\bfE (p)) are restricted to the left half of the complex plane,
\scrR (\Lambda (\bfA (p),\bfE (p)))< 0.

Problem statement. Given the complex domain data

(2.7) \{ si, pj ,\bfPhi ij | si \in \BbbC , pj \in \BbbC ,\bfPhi ij \in \BbbC ny\times nu\} , i= 1 :N,j = 1 :M,

obtained by sampling the transfer matrix of a parameter-dependent linear system, we seek
a parametric descriptor system \^S(p) of low order \^k such that its transfer matrix \^\bfH (s, p) of
degree (\^n, \^m) closely approximates the sampled data, \^\bfH (si, pj)\approx \bfPhi ij for i= 1 :N,j = 1 :M .
In this work, a single parameter p is considered.

The developed methodology seeks the solution of the stated problem by means of two-
variable Lagrange rational matrix interpolation, such that the following conditions hold.

\bullet The identified model \^S(p) is of low order \^k and has low complexity of the parameter
dependence \^m.

\bullet The identified model is C-controllable and C-observable for rectangular transfer matrix
samples.

\bullet The model closely approximates the sampled data given with (2.7) such that the
pointwise error matrices, \bfE rr(si, pj) = \^\bfH (si, pj) - \bfPhi ij , have small norms.

\bullet The model accurately captures the dynamic behavior of the original system in the
time domain.

When the methodology is used for model-order reduction, the samples \bfPhi ij are generated by
sampling a transfer function/matrix of a parameter-dependent large-scale dynamical system
S(p) described with the state-space equations of high order k. This system is then approxi-
mated with the system \^S(p) of lower order \^k, \^k\ll k. In the case of the system identification,
low-order parametric descriptor system \^S(p) is identified from general transfer function/matrix
samples of an unknown system. Here, generality implies that the samples do not have to orig-
inate from a rational function/matrix.

3. Overview of the Loewner framework for SISO systems. The problem stated in section
2 is solved in the Loewner framework by means of Lagrange rational interpolation. For the
nonparametric systems, this can be done either by introducing the shifted Loewner matrix [25]
or by utilizing the barycentric formula [2], in addition to the Loewner matrix, as explained in
[16]. The latter approach can be generalized to solve the two-variable rational interpolation
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3136 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

problem in a straightforward manner. Therefore, we discuss the nonparametric [2] (subsection
3.1) and parametric Loewner frameworks for SISO systems [4, 17] (subsection 3.2), which
utilize the barycentric formula, prior to generalizing them to MIMO systems.

3.1. Nonparametric SISO case. We summarize the results for the one-variable rational
function interpolation problem within the Loewner framework [2, 16] and its application to
identification of low-order descriptor systems.

3.1.1. One-variable rational function interpolation. In the one-variable rational function
interpolation problem, a set of transfer function samples \Phi i (nu = ny = 1), solely dependent
on the complex variable s,

(3.1) \{ si,\Phi i | si \in \BbbC ,\Phi i \in \BbbC \} , i= 1 :N,

is given. Here, it is assumed that the sample points si are distinct. A unique rational function
H(s) which interpolates the given set (3.1), H(si) = \Phi i, i= 1 :N , and its minimal descriptor
realization (\bfE ,\bfA ,\bfB ,\bfC ,\bfD ), are found by means of Lagrange rational function interpolation.
Rational function of degree n is defined as a ratio of two polynomials, n(s) and d(s),

(3.2) H(s) =
n(s)

d(s)
=

\sum n+1
i=1 \beta ilsi(s)\sum n+1
i=1 \alpha ilsi(s)

, \alpha i \not = 0,

expressed in Lagrange basis, s - \lambda i. Here lsi(s) =
\prod n+1

i\prime =1,i\prime \not =i
(s - \lambda i\prime ) are the Lagrange factors,

and \lambda i\prime denote distinct Lagrange nodes [16]. \beta i and \alpha i are the numerator and denominator
coefficients. Equation (3.2) can also be expressed in the rational barycentric form [2, 6],

(3.3) H(s) =

\sum n+1
i=1

\beta i

s - \lambda i\sum n+1
i=1

\alpha i

s - \lambda i

.

The first step in constructing the rational function H(s) is to partition the data (3.1) into
two disjoint sets,

[s1, . . . , sN ] = [\lambda 1, . . . , \lambda n]\cup [\mu 1, . . . , \mu n],

[\Phi 1, . . . ,\Phi N ] = [w1, . . . ,wn]\cup [\mu 1, . . . , \mu n],

where n is the total number of Lagrange nodes, and n = N  - n. Coefficients \beta i and \alpha i are
then found by imposing the following interpolation conditions at H(s):

H(\lambda i) =wi, H(\mu h) = vh.

The interpolation condition at the Lagrange node \lambda i is satisfied by setting \beta i = \alpha iwi. The
interpolation conditions at \mu h, h= 1 : n, can be written in the matrix form

(3.4) \BbbL \bfa =

\left[    
v1 - w1

\mu 1 - \lambda 1
. . . v1 - wn

\mu 1 - \lambda n

...
vn - w1

\mu n - \lambda 1
. . .

vn - wn

\mu n - \lambda n

\right]    
\left[     
\alpha 1

\alpha 2

...
\alpha n

\right]     = \bfzero ,

where \BbbL is called the Loewner matrix [2]. From (3.4) it follows that the coefficients \alpha i are
contained in the null vector of the Loewner matrix denoted as \bfa .
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3137

Theorem 3.1. One-variable Lagrange rational function interpolation [2].
(a) Given the data set obtained by sampling a rational function H(s) of degree n and

partitioning the data such that n \geq n and n \geq n, all possible n\times n Loewner matrices
have rank equal to n.

(b) For n = n + 1 and n \geq n, the Loewner matrix \BbbL has a null vector \bfa =\bigl[ 
\alpha 1 \alpha 2 . . . \alpha n+1

\bigr] \ast 
, \alpha i \not = 0. A unique rational function of minimal degree n which in-

terpolates the sampled set, and therefore coincides with the underlying function H(s),
can be obtained in the forms given by (3.3), (3.2), where \beta i =wi\alpha i, i= 1 : n+ 1.

Theorem 3.1 holds for sampled sets that are not degenerate, meaning that none of the
sample points is a pole of the underlying rational function. This assumption is justified since
in real applications, degenerate sets are rarely encountered due to round-off errors [17].

Once the coefficients \alpha i are calculated and the rational interpolant H(s) of degree n given
by (3.2), (3.3) is obtained, its descriptor system can be easily found.

Theorem 3.2. Descriptor realization of one-variable rational function H(s).
(a) Rational function H(s) = n(s)/d(s) of degree n given with (3.2), (3.3) has the following

descriptor realization [4]:

(3.5)
\bfE =

\left[     
1  - 1
...

. . .

1  - 1
0 0 . . . 0

\right]     , \bfA =

\left[     
\lambda 1  - \lambda 2

...
. . .

\lambda 1  - \lambda n+1

 - \alpha 1  - \alpha 2 . . .  - \alpha n+1

\right]     , \bfB =

\left[     
0
...
0
1

\right]     ,
\bfC =

\bigl[ 
\beta 1 . . . \beta n+1

\bigr] 
, \bfD = \bfzero .

(b) This realization of order k = n+ 1 is C-controllable and C-observable, i.e., minimal,
for proper and improper H(s). Otherwise, it is C-controllable and R-observable.

Remark. This realization is not minimal for strictly proper H(s) since for such functions,\sum n+1
i=1 \beta i = 0.
Theorem 3.2(b) is original and its proof can be found in Appendix C.1. The procedure for

avoiding complex arithmetic and obtaining the realization that has matrices with real entries
(when s is complex) is summarized in Appendix A.1.

3.1.2. Identification of low-order descriptor systems. Theorems 3.1 and 3.2 explain how
to identify (recover) the minimal descriptor system from its transfer function samples using the
Loewner framework. However, the applicability of this framework is much greater. Namely,
the Loewner framework can be used for identification of a rational function \^H(s) of low order
\^n and its minimal realization, which closely approximates an arbitrary set of transfer function
measurements. The procedure is the following. Given the N samples which originate from
a rational transfer function of degree n or from a nonrational transfer function, we build
(almost) square \BbbL by setting n=N/2 (for an even number of samples) or n=N/2+1 (for an
odd number of samples). Then by calculating the singular value decomposition of \BbbL we choose
a new degree \^n (\^n< n for rational function or \^n\leq N/2 for nonrational function samples) such
that an (\^n+1)th singular value is sufficiently small. Finally, by setting n= \^n+1 and updating
\BbbL accordingly, coefficients \^\alpha i, i= 1 : \^n, are obtained from the right singular vector associated
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3138 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

with the smallest singular value of \BbbL . Such coefficients \^\alpha i, together with \^\beta i = wi\^\alpha i, form a
rational function \^H(s) = \^n(s)/ \^d(s) as in (3.2), (3.3) whose descriptor realization (\^\bfE , \^\bfA , \^\bfB , \^\bfC )
is given by (3.5). Obtained rational function \^H(s) is of degree \^n, and its realization is minimal
if and only if \^n(s) and \^d(s) have no common poles, coefficients \^\alpha i, i = 1 : \^n+ 1, are nonzero,
and the highest numerator coefficient

\sum \^n+1
i=1

\^\beta i is nonzero (see Theorem 3.2 and its proof given
in Appendix C.1). In real applications, these conditions are commonly met due to round-off
errors. The pointwise approximation error is proportional to the smallest singular value of
\BbbL [17], as shown later for the MIMO case (subsection 4.1, Lemma 4.5). Therefore, we can
see that the singular value decomposition of \BbbL suggests an appropriate reduced degree \^n of a
rational function which closely approximates the sampled data.

3.2. Parametric SISO case. The results of the two-variable rational interpolation in the
Loewner framework from [4] and its extension for the purpose of identifying low-order para-
metric descriptor systems [17] are presented. The novelty here is derivation of the conditions
required for controllability and observability of the constructed parametric descriptor systems.

3.2.1. Two-variable rational function interpolation. Given the sampled set (2.7) of a
parameter-dependent transfer function \Phi ij(ny = nu = 1), we seek a two-variable rational
function of degree (n,m) (degree n in s and degree m in p) expressed in the Lagrange basis
[4, 17],

(3.6) H(s, p) =
n(s, p)

d(s, p)
=

\sum n+1
i=1

\sum m+1
j=1 \beta ijlsi(s)lpj

(p)\sum n+1
i=1

\sum m+1
j=1 \alpha ijlsi(s)lpj

(p)
, \alpha ij \not = 0,

which interpolates the sampled set, and its minimal realization. Here lpj
(p) =

\prod m+1
j\prime =1,j\prime \not =j

(s - 
\pi j\prime ) and \pi j\prime denote the Lagrange factors and the distinct Lagrange nodes in the parameter
variable p. The barycentric form of (3.6) is [4, 17]

(3.7) H(s, p) =

\sum n+1
i=1

\sum m+1
j=1

\beta ij

(s - \lambda i)(p - \pi j)\sum n+1
i=1

\sum m+1
j=1

\alpha ij

(s - \lambda i)(p - \pi j)

.

To evaluate the interpolant H(s, p), the sampled data is partitioned into two disjoint sets,

(3.8)

[si, . . . , sN ] = [\lambda 1, . . . , \lambda n]\cup [\mu 1, . . . , \mu n],

[p1, . . . , pM ] = [\pi 1, . . . , \pi m]\cup [\nu 1, . . . , \nu m],

[\Phi 11, . . . ,\Phi NM ] =

\left[          

w11 . . . w1m

...
. . .

...
wn1 . . . wnm

\Phi 1,m+1 . . . \Phi 1,M

...
. . .

...
\Phi n,m+1 . . . \Phi n,M

\Phi n+1,1 . . . \Phi n+1,m

...
. . .

...
\Phi N,1 . . . \Phi N,m

v11 . . . v1m
...

. . .
...

vn1 . . . vnm

\right]          
=\bfPhi ,

where n and m are the total number of Lagrange nodes in s and p and n=N - n, m=M - m.
The interpolation condition at the Lagrange node (\lambda i, \pi j) is satisfied by setting \beta ij = wij\alpha ij .
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3139

Interpolation conditions at nodes (\mu h, \nu d), h = 1 : n,d = 1 : m, can be written in the matrix
form

(3.9)

\BbbL 2\bfa 2 =

\left[              

c1,11,1 . . . c1,11,m . . . c1,1n,1 . . . c1,1n,m
...

...
...

...

c
1,m
1,1 . . . c

1,m
1,m . . . c

1,m
n,1 . . . c

1,m
n,m

...
...

...
...

c
n,1
1,1 . . . c

n,1
1,n . . . c

n,1
n,1 . . . c

n,1
n,m

...
...

...
...

c
n,m
1,1 . . . c

n,m
1,m . . . c

n,m
n,1 . . . c

n,m
n,m

\right]              

\left[               

\alpha 11

...
\alpha 1m

...

\alpha n1

...
\alpha nm

\right]               
= \bfzero ,

where

ch,di,j =
vhd  - wij

(\mu h  - \lambda i)(\nu d  - \pi j)
,

and \BbbL 2 denotes the two-variable Loewner matrix [4].

Theorem 3.3. Two-variable Lagrange rational function interpolation [4].
(a) Given the data set obtained by sampling a two-variable rational function H(s, p) of

degrees (n, m) with sufficient number of measurements and data partition such that
n,n \geq n, m,m \geq m, all nm\times nm two-variable Loewner matrices have rank equal to
rank \BbbL 2 = nm - (n - n)(m - m).

(b) For data partition with (n,m) = (n+ 1,m+ 1), two-variable Loewner matrix \BbbL 2 has
a null space of dimension one, and its null vector follows the Kronecker structure,

\bfa 2=
\bigl[ 
\alpha 11 . . . \alpha 1m+1 . . . \alpha n+11 . . . \alpha n+1m+1

\bigr] T
, \alpha ij \not = 0. H(s, p) can then be re-

constructed in the forms given by (3.6), (3.7), with \beta ij =wi\alpha ij , i= 1 : n+1, j = 1 :m+1.

Theorem 3.3(a) shows that, unlike the one-variable Loewner matrix \BbbL , the two-variable
\BbbL 2 has the rank dependent on the sample size. Therefore, to reconstruct the two-variable
rational function H(s, p) of unknown complexity according to Theorem 3.3(b), we compute
the degrees n and m by calculating the maximum rank of all one-variable Loewner matrices
associated with each column, \BbbL (pj), pj = const., and each row, \BbbL (si), si = const., of \bfPhi (3.8),
as suggested in [17].

(3.10) n=max
j

rank\BbbL (pj), m=max
i

rank\BbbL (si), j = 1 :M,i= 1 :N.

Theorem 3.4. Descriptor realization of two-variable rational function H(s, p).
(a) Two-variable rational function H(s, p) of degree (n,m) given by (3.6), (3.7) has the

following descriptor realization (\bfE ,\bfA (p),\bfB ,\bfC (p)) [4]:

(3.11)
\bfE =

\left[     
1  - 1
...

. . .

1  - 1
0 0 . . . 0

\right]     , \bfA (p) =

\left[     
\lambda 1  - \lambda 2

...
. . .

\lambda 1  - \lambda n+1

 - \~\alpha 1(p)  - \~\alpha 2(p) . . .  - \~\alpha n+1(p)

\right]     ,
\bfC (p) =

\bigl[ 
\~\beta 1(p) . . . \~\beta n+1(p)

\bigr] 
, \bfB =

\bigl[ 
0 . . . 0 1

\bigr] \ast 
.
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3140 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

where

(3.12) \~\beta i(p) =

m+1\sum 
j=1

wij\alpha ijlpj
(p), \~\alpha i(p) =

m+1\sum 
j=1

\alpha ijlpj
(p).

(b) This realization of order k= n+1 is C-controllable and C-observable, i.e., minimal if
H(s, p) is proper or improper in s for every p \in \BbbC ; otherwise, it is C-controllable and
R-observable.

Remark. Here, just as in Definitions 2.1 and 2.2, the parametric descriptor system is
considered to be controllable and observable if the controllability and observability conditions
hold over p\in \BbbC . For the realization to be C-controllable over p\in \BbbC ,

\sum n+1
i=1

\~\beta i(p) needs to be a
nonzero constant for all p\in \BbbC (see the proof of Theorem 3.4(b) given in Appendix C.2). This
is the case for which H(s, p) is proper or improper in s for every p\in \BbbC . Otherwise, the system
is minimal over p \in \BbbC \setminus \{ rp\} , where rp are zeros of

\sum n+1
i=1

\~\beta i(p). Note that the parameters can
also be defined on the domain of real numbers, and in that case the conditions are defined for
p\in \BbbR .

Theorem 3.3 states that the two-variable rational functionH(s, p) can be identified from its
own samples (assuming the data is sufficiently large) by imposing the interpolation conditions
only at points (\lambda i, \pi j) and (\mu h, \nu d). This is proven in [17] by introducing the generalized two-
variable Loewner matrix \^\BbbL 2, which includes the whole sampled set, and showing that the null
vectors of \BbbL 2 and \^\BbbL 2 are the same.

3.2.2. Identification of low-order parametric descriptor systems. Analogous to the non-
parametric case, the results for two-variable rational interpolation in the Loewner framework
can be used for parametric model-order reduction and low-order parametric system identi-
fication. Given a general sampled set, the singular value decomposition of the one-variable
Loewner matrices \BbbL (pj) and \BbbL (si) as in (3.10) can be used to detect low degrees (\^n, \^m) of
rational approximant \^H(s, p). \^H(s, p) is constructed by setting n = \^n + 1 and m = \^m + 1
and obtaining \^\alpha ij from the right singular vector of \^\BbbL 2 associated with the smallest singular

value. As in the nonparametric case, it is justified to expect that the coefficients \^\alpha ij and \^\beta ij
form a function \^H(s, p) with degrees \^n and \^m and the nonzero highest numerator coefficient\sum \^n+1

i=1
\~\beta i(p) (polynomial function with zeros rp). For such a function, descriptor realization

(3.11) of order \^k= \^n+1 with parametric coefficients of degree \^m is minimal over p\in \BbbC \setminus \{ rp\} .
It is shown in [17] that the pointwise approximation error is proportional to the smallest sin-
gular value of \^\BbbL 2. Therefore, this approach allows users to choose appropriate order \^k and
complexity \^m in p by tuning n and m.

4. MIMO systems. First, we generalize the results for the one-variable rational function
interpolation problem presented in subsection 3.1 to handle rectangular matrix data. This
is referred to as the rational matrix interpolation. These results, combined with the knowl-
edge of two-variable rational function interpolation (subsection 3.2), are then used for further
generalization to the two-variable rational matrix interpolation. Both the results of rational
matrix interpolation and its parametric counterpart are extended to obtain a new method for
identification of low-order MIMO descriptor systems in nonparametric and parametric forms.
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3141

4.1. Nonparametric MIMO systems. Here we present the novel results for one-variable
rational matrix interpolation and its application to identification of low-order MIMO descrip-
tor systems with rectangular transfer matrices.

4.1.1. One-variable rational matrix interpolation. Given the set of sampled rectangular
transfer matrix \{ si,\bfPhi i | si \in \BbbC ,\bfPhi i \in \BbbC ny\times nu\} , i= 1 :N , we seek a rational matrix \bfH (s) which
interpolates the set and its descriptor realization of minimal or as close as possible to minimal
order. The considered rational matrix is given by the barycentric formula in the polynomial
matrix fraction form

\bfH (s) =\bfN (s)\bfD (s) - 1 =

\Biggl( 
n\sum 

i=1

\bfitbeta i

s - \lambda i

\Biggr) \Biggl( 
n\sum 

i=1

\bfitalpha i

s - \lambda i

\Biggr)  - 1

for ny \geq nu,(4.1a)

\bfH (s) =\bfD (s) - 1\bfN (s) =

\Biggl( 
n\sum 

i=1

\bfitalpha i

s - \lambda i

\Biggr)  - 1\Biggl( n\sum 
i=1

\bfitbeta i

s - \lambda i

\Biggr) 
for ny \leq nu,(4.1b)

where det \bfitalpha i \not = 0. Here, n denotes the number of Lagrange nodes. Depending on the number
of inputs and outputs, the right (4.1a) or left (4.1b) polynomial matrix fraction form is used.
This ensures the construction of the coefficient matrices \bfitalpha i with dimension nmin \times nmin,
where nmin =min(nu, ny), and allows us to build minimal or close to minimal realization, as
explained later.

Lemma 4.1. (a) \bfH (s) =\bfN (s)\bfD (s) - 1 given with (4.1a) has the degree n= (n - 1)nu if and
only if \bfN (s) and \bfD (s) are the right coprime polynomial matrices and [\bfN (s)\ast ,\bfD (s)\ast ]\ast is given
in the column reduced form, i.e.,

rank

\biggl[ 
\bfN (s)
\bfD (s)

\biggr] 
= nu for all finite s and rank\bfP hc

\biggl( \biggl[ 
\bfN (s)
\bfD (s)

\biggr] \biggr) 
= nu,

where \bfP hc is the highest column coefficient matrix of [\bfN (s)\ast ,\bfD (s)\ast ]\ast ,

\bfP hc

\biggl( \biggl[ 
\bfN (s)
\bfD (s)

\biggr] \biggr) 
=

\biggl[ \sum n
i=1\bfitbeta i\sum n
i=1\bfitalpha i

\biggr] 
.

(b) \bfH (s) =\bfD (s) - 1\bfN (s) given by (4.1b) has the degree n= (n - 1)ny if and only if \bfN (s) and
\bfD (s) are the left coprime polynomial matrices and [\bfN (s),\bfD (s)] is given in the row reduced
form, i.e.,

rank
\bigl[ 
\bfN (s) \bfD (s)

\bigr] 
= ny for all finite s and rank\bfP hr

\bigl( \bigl[ 
\bfN (s) \bfD (s)

\bigr] \bigr) 
= ny,

where \bfP hr ([\bfN (s),\bfD (s)]) = [
\sum n

i=1\bfitbeta i,
\sum n

i=1\bfitalpha i] denotes the highest row coefficient matrix of
[\bfN (s),\bfD (s)].

Under the conditions stated in Lemma 4.1, \bfH (s) obtains the highest degree possible.
Therefore, the degree n of \bfH (s) as in (4.1a), (4.1b) is bounded from above,

n\leq (n - 1)nmin.

Lemma 4.1 relies on the auxiliary lemma of [3].
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3142 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

The sampled data is partitioned into two disjoint sets, \{ \lambda i,\bfW i, i= 1 : n\} and \{ \mu h,\bfV h, h=
1 : n\} . The coefficient matrices \bfitbeta i and \bfitalpha i are found by imposing the interpolation conditions
on \bfH (s). Interpolation conditions at the Lagrange nodes \lambda i are satisfied by setting \bfitbeta i =\bfW i\bfitalpha i

in (4.1a) and \bfitbeta i =\bfitalpha i\bfW i in (4.1b). To solve for the coefficients \bfitalpha i, we introduce the right and
left MIMO Loewner matrices,1 \BbbL r and \BbbL l, such that

\BbbL r\BbbA r =

\left[    
\bfV 1 - \bfW 1

\mu 1 - \lambda 1
. . . \bfV 1 - \bfW n

\mu 1 - \lambda n

...
\bfV n - \bfW 1

\mu n - \lambda n
. . .

\bfV n - \bfW n

\mu n - \lambda n

\right]    
\left[   \bfitalpha 1

...
\bfitalpha n

\right]   = \bfzero for ny \geq nu,(4.2a)

\BbbL l\BbbA l =

\left[    
\bfV \ast 

1 - \bfW \ast 
1

\mu 1 - \lambda 1
. . . \bfV \ast 

1 - \bfW \ast 
n

\mu 1 - \lambda n

...
\bfV \ast 

n - \bfW \ast 
1

\mu n - \lambda 1
. . .

\bfV \ast 
n - \bfW \ast 

n

\mu n - \lambda n

\right]    
\left[   \bfitalpha 

\ast 
1
...
\bfitalpha \ast 

n

\right]   = \bfzero for ny \leq nu.(4.2b)

The right and left MIMO Loewner matrices built from samples of some rational matrix \bfR (s)
of degree n with the minimal descriptor realization (\=\bfE , \=\bfA , \=\bfB , \=\bfC ),

\BbbL r
hi =

\=\bfC 
\bigl[ 
(\mu h

\=\bfE  - \=\bfA ) - 1  - (\lambda i
\=\bfE  - \=\bfA ) - 1

\bigr] 
\=\bfB 

\mu h  - \lambda i
,

\BbbL l
hi =

\=\bfB \ast \bigl[ \bigl( (\mu h
\=\bfE  - \=\bfA ) - 1

\bigr) \ast  - \bigl( (\lambda i
\=\bfE  - \=\bfA ) - 1

\bigr) \ast \bigr] \=\bfC \ast 

\mu h  - \lambda i
,

can be factored as the product of the MIMO generalized observability matrix \scrO , matrix \=\bfE ,
and the MIMO generalized controllability \scrC ,

(4.3) \BbbL r = - \scrO r \=\bfE \scrC r, \BbbL l = - \scrC l\ast \=\bfE \ast \scrO l\ast ,

where

\scrO r =

\left[   
\=\bfC (\mu 1

\=\bfE  - \=\bfA ) - 1

...
\=\bfC (\mu n

\=\bfE  - \=\bfA ) - 1

\right]   , \scrC r = \bigl[ (\lambda 1
\=\bfE  - \=\bfA ) - 1 \=\bfB . . . (\lambda n

\=\bfE  - \=\bfA ) - 1 \=\bfB 
\bigr] 
,

\scrO l =

\left[   
\=\bfC (\lambda 1

\=\bfE  - \=\bfA ) - 1

...
\=\bfC (\lambda n

\=\bfE  - \=\bfA ) - 1

\right]   , \scrC l = \bigl[ (\mu 1
\=\bfE  - \=\bfA ) - 1 \=\bfB . . . (\mu n

\=\bfE  - \=\bfA ) - 1 \=\bfB 
\bigr] 
.

Under the minimality assumption, rank \=\bfE = n [37].

Lemma 4.2. Let (\=\bfE , \=\bfA , \=\bfB ) and (\=\bfE , \=\bfA , \=\bfC ) be a controllable and observable triple of minimal
order kmin--, and assume \lambda i, \mu h, i = 1 : n,h = 1 : n are not generalized eigenvalues of ( \=\bfA , \=\bfE ).
Then the rank of the MIMO generalized controllability and observability matrix is kmin. That
is,

1Note that these matrices differ from the left and right Loewner matrices introduced in [32].
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rank\scrO r = kmin, rank \scrC r = kmin, for ny \geq nu,(4.4a)

rank\scrO l = kmin, rank \scrC l = kmin, for ny \leq nu,(4.4b)

provided that n> n, n> n.

Proof of Lemma 4.2 is given in Appendix C.3. An immediate consequence of the factor-
ization (4.3) and Lemma 4.2 is the following theorem.

Theorem 4.3. If sampled data originates from a rational matrix \bfR (s) of (McMillan) degree
n which has a minimal realization (\=\bfE , \=\bfA , \=\bfB , \=\bfC ) of order kmin, \bfR (s) = \=\bfC (s\=\bfE  - \=\bfA ) - 1 \=\bfB , then
every MIMO Loewner matrix which has more than n block columns, n > n, and more than n
block rows, n> n, has a rank equal to n.

From Theorem 4.3, we know the rank of the MIMO Loewner matrix \BbbL r/l, constructed
from samples of a rational matrix of degree n when n > n. When n = n+ 1, the null space
of \BbbL r/l is of dimension (n+1)nmin - n. Therefore, under the condition of full-rank coefficient
matrices \bfitalpha i, the sampled rational matrix is reconstructed as (4.1) from the null space of the
MIMO Loewner matrix. Even though this condition is often met, it is not always guaranteed
to hold.

Theorem 4.4.
(a) The descriptor realization of rational matrix \bfH (s) of degree n given as right polynomial

matrix fraction (4.1a) is

(4.5)
\bfE =

\left[     
\bfI nu

 - \bfI nu

...
. . .

\bfI nu
 - \bfI nu

\bfzero \bfzero . . . \bfzero 

\right]     , \bfA =

\left[     
\lambda 1\bfI nu

 - \lambda 2\bfI nu

...
. . .

\lambda 1\bfI nu
 - \lambda n\bfI nu

 - \bfitalpha 1  - \bfitalpha 2 . . .  - \bfitalpha n

\right]     ,
\bfC =

\bigl[ 
\bfitbeta 1 . . . \bfitbeta n

\bigr] 
, \bfB =

\bigl[ 
\bfzero . . . \bfzero \bfI nu

\bigr] \ast 
,

while the descriptor realization of \bfH (s) of degree n given as left polynomial matrix
fraction (4.1b) is

(4.6)
\bfE =

\left[     
\bfI ny

\bfI ny
. . . \bfzero 

 - \bfI ny
\bfzero 

. . .

 - \bfI ny
\bfzero 

\right]     , \bfA =

\left[     
\lambda 1\bfI ny

\lambda 1\bfI ny
. . .  - \bfitalpha 1

 - \lambda 2\bfI ny
 - \bfitalpha 2

. . .

 - \lambda n\bfI ny
 - \bfitalpha n

\right]     ,
\bfC =

\bigl[ 
\bfzero . . . \bfzero \bfI ny

\bigr] 
, \bfB =

\bigl[ 
\bfitbeta \ast 
1 . . . \bfitbeta \ast 

n

\bigr] \ast 
.

(b) Realization (4.5) is C-controllable and R-observable if and only if \bfN (s) and \bfD (s)
are the right coprime polynomial matrices. Realization (4.6) is C-observable and R-
controllable if and only if \bfN (s) and \bfD (s) are the left coprime polynomial matrices.

(c) Realization (4.5) is minimal if and only if the order k is k = kmin = n + nu and\sum n
i=1\bfitbeta i has full column rank. Realization (4.6) is minimal if and only if the order k

is k= kmin = n+ ny and
\sum n

i=1\bfitbeta i has full row rank.
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3144 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

Remark. Notice that the introduction of the left polynomial fraction description of \bfH (s)
as in (4.1b) is necessary for construction of controllable and observable realizations when
ny <nu. Furthermore, notice that both (4.5) and (4.6) cannot be minimal for strictly proper
\bfH (s).

According to Theorem 4.4 (see proof in Appendix C.4), realization is minimal only if \bfH (s)
has the maximum degree, n= (n - 1)nmin. Therefore, in an attempt to recover a rational ma-
trix of some degree n in the minimal realization form, we set the number of Lagrange nodes as

n= n/nmin + 1.

This, however, is only possible if n is divisible by nmin. Otherwise, to obtain the rational
matrix of order n, n > n/nmin + 1 and therefore k > n+ nmin = kmin. Moreover, even if n is
divisible by nmin, the underlying rational function cannot always be recovered by calculating
the null vector of the MIMO Loewner matrix. This is a consequence of Theorem 4.3 which
states that the MIMO Loewner matrix is guaranteed to detect the degree of the underlying
rational matrix only if n> n. Thus, if n= n/nmin+1<n, the null space \BbbA can be of dimension
smaller than nmin. Therefore, the presented methodology cannot always recover the rational
matrix of order n in the minimal realization form from its own samples. The limitation
regarding minimality of constructed descriptor systems, however, tends to diminish when
the proposed method is used for reduced order modeling and low-order system identification
purposes.

4.1.2. Identification of low-order descriptor systems. Given an arbitrary sampled set of
rectangular transfer matrices, we seek the rational matrix \^\bfH (s),

\^\bfH (s) =

\Biggl( 
n\sum 

i=1

\bfW i \^\bfitalpha i

s - \lambda i

\Biggr) \Biggl( 
n\sum 

i=1

\^\bfitalpha i

s - \lambda i

\Biggr)  - 1

for ny \geq nu,(4.7a)

\^\bfH (s) =

\Biggl( 
n\sum 

i=1

\^\bfitalpha i

s - \lambda i

\Biggr)  - 1\Biggl( n\sum 
i=1

\^\bfitalpha i\bfW i

s - \lambda i

\Biggr) 
for ny \leq nu,(4.7b)

such that it accurately approximates the sampled data and its minimal descriptor realization.
First, we determine the desired low degree \^n of \^\bfH (s), for which the data can be accurately ap-
proximated. This can be done by calculating the singular value decomposition of the Loewner
matrix based on tangential interpolation from [25], as suggested in [23]. Degree \^n is chosen
such that it is divisible by nmin and the associated singular value is sufficiently small. Then we
partition the data such that n= \^n/nmin+1. With this setting, both rational and nonrational
matrix samples usually form numerically full-rank MIMO Loewner matrices. Coefficients \^\bfitalpha i

are thus obtained from the right singular vectors of \BbbL r/l associated with the nmin smallest
singular values. In real applications, due to round-off errors, \^\bfitalpha i are full-rank matrices, and
the rational approximant \^\bfH (s) tends to obtain the desired degree \^n = (n  - 1)nmin, which
is the maximum degree for the given n. Furthermore, for the same reason,

\sum n
i=1\bfW i \^\bfitalpha i and\sum n

i=1 \^\bfitalpha i\bfW i are expected to have full column and full row rank, respectively. As n decreases,
the chances of these assumptions failing are lower. Therefore, it is reasonable to expect that
the descriptor realization of \^\bfH (s), which can be obtained from Theorem 4.4, is C-observable
and C-controllable.
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3145

Rational matrix \^\bfH (s) as in (4.7) interpolates the sampled set at the Lagrange nodes by
definition, under the condition det \^\bfitalpha i \not = 0. Thus, the pointwise approximation error matrix is
evaluated at nodes \mu h,

\bfE rr(\mu h) =\bfV h  - \^\bfH (\mu h) =

\Biggl( 
n\sum 

i=1

\bfV h  - \bfW i

\mu h  - \lambda i
\^\bfitalpha i

\Biggr) \Biggl( 
n\sum 

i=1

\^\bfitalpha i

\mu h  - \lambda i

\Biggr)  - 1

for ny \geq nu

\bfE \ast 
rr(\mu h) =\bfV \ast 

h  - \^\bfH \ast (\mu h) =

\Biggl( 
n\sum 

i=1

\bfV \ast 
h  - \bfW \ast 

i

\mu h  - \lambda i
\^\bfitalpha \ast 
i

\Biggr) \Biggl( 
n\sum 

i=1

\^\bfitalpha \ast 
i

\mu h  - \lambda i

\Biggr)  - 1

for ny \leq nu.

Here the first term represents the hth block row of \BbbL r and \BbbL l, respectively. We can see that
when the coefficients \^\bfitalpha i are obtained from the null space of \BbbL r/l, the pointwise error is zero.

Lemma 4.5. Let \^\bfSigma = diag (\^\sigma 1, . . . , \^\sigma nmin
) be the matrix of the nmin smallest singular values

of \BbbL r/l, and let \^\bfX , \^\bfY be the matrices of the associated nmin right and left singular vectors,
\^\bfY = [ \^\bfY \ast 

1, . . . ,
\^\bfY \ast 
n]

\ast , \^\bfX = [ \^\bfX \ast 
1, . . . ,

\^\bfX \ast 
n]

\ast . Then, by setting \^\BbbA r/l
= \^\bfX , the pointwise approximation

error matrix is given as

\bfE rr(\mu h) =\bfV h  - \^\bfH (\mu h) = \^\bfY h
\^\bfSigma 

\Biggl( 
n\sum 

i=1

\^\bfitalpha i

\mu h  - \lambda i

\Biggr)  - 1

, h= 1 : n for ny \geq nu,

\bfE \ast 
rr(\mu h) =\bfV \ast 

h  - \^\bfH \ast (\mu h) = \^\bfY h
\^\bfSigma 

\Biggl( 
n\sum 

i=1

\^\bfitalpha \ast 
i

\mu h  - \lambda i

\Biggr)  - 1

, h= 1 : n for ny \leq nu.

According to Lemma 4.5, the pointwise error of the rational approximant \^\bfH (s) is propor-
tional to the smallest singular values of \BbbL r/l. More precisely, each entry of the error matrix
\bfE rr(\mu h) can be expressed as a linear combination of the nmin smallest singular values. Notice
that, when the sampled data originates from a rational matrix of order n, setting n> n leads
to zero error matrix \bfE rr(s) at nodes s = \mu h since \^\bfSigma = \bfzero (according to Theorem 4.3). The
sampled data is therefore fully interpolated if obtained \bfitalpha i are full-rank. Thus by tuning n,
we can either construct rational interpolant \bfH (s) or approximant \^\bfH (s).

4.2. Parametric MIMO systems. Here we generalize the results for the one-variable ra-
tional matrix interpolation problem to solve the two-variable rational matrix interpolation
problem. We also present the novel method for identification of the parametric MIMO de-
scriptor systems of low order, which is based on these results.

4.2.1. Two-variable rational matrix interpolation. Given the sampled set of parameter-
dependent transfer matrix (2.7), we seek a two-variable rational matrix \bfH (s, p) given in the
Lagrange basis,

\bfH (s, p) =\bfN (s, p)\bfD (s, p) - 1 for ny \geq nu,(4.8a)

\bfH (s, p) =\bfD (s, p) - 1\bfN (s, p) for ny \leq nu,(4.8b)

\bfD (s, p) =

n\sum 
i=1

m\sum 
j=1

\bfitbeta ij

(s - \lambda i)(p - \pi j)
, \bfN (s, p) =

n\sum 
i=1

m\sum 
j=1

\bfitalpha ij

(s - \lambda i)(p - \pi j)
,(4.8c)
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3146 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

and det\bfitalpha ij \not = 0, which interpolates the set, and its minimal (or close to minimal) realization.
Degrees in s and p of \bfH (s, p) as in (4.8) are upper bounded,

n\leq (n - 1)nmin and m\leq (m - 1)nmin.

\bfH (s, p) obtains the maximum degree in variables s and p when the conditions stated in Lemma
4.1 hold for a fixed p and a fixed s, respectively. This is stated in Lemma 4.6.

Lemma 4.6. \bfH (s, p) = \bfN (s, p)\bfD (s, p) - 1 given by (4.8) has degree n = (n - 1)nu in s and
m = (m  - 1)nu in p if and only if \bfN (s, p) and \bfD (s, p) are the right coprime two-variable
polynomial matrices,

(4.9) rank

\biggl[ 
\bfN (s, p)
\bfD (s, p)

\biggr] 
= nu for all finite s, p\in \BbbC ;

[\bfN (s, p)\ast ,\bfD (s, p)\ast ]\ast is given in the column reduced form for some p= const., i.e., the highest
column coefficient matrix with respect to variable s is full column rank,

rank\bfP s
hc

\biggl( \biggl[ 
\bfN (s, p)
\bfD (s, p)

\biggr] \biggr) 
= rank

\biggl[ \sum n
i=1

\~\bfitbeta i(p)\sum n
i=1 \~\bfitalpha i(p)

\biggr] 
= nu for some p= const.,(4.10a)

\~\bfitbeta i(p) =

m\sum 
j=1

\bfitbeta ijlpj
(p), \~\bfitalpha i(p) =

m\sum 
j=1

\bfitalpha ijlpj
(p);(4.10b)

and [\bfN (s, p)\ast ,\bfD (s, p)\ast ]\ast is given in the column reduced form for some s = const. i.e., the
highest column coefficient matrix with respect to variable p is full column rank,

rank\bfP p
hc

\biggl( \biggl[ 
\bfN (s, p)
\bfD (s, p)

\biggr] \biggr) 
= rank

\Biggl[ \sum m
j=1

\~\bfitbeta j(s)\sum m
j=1 \~\bfitalpha j(s)

\Biggr] 
= nu for some s= const.,

\~\bfitbeta j(s) =

n\sum 
i=1

\bfitbeta ijlsi(s), \~\bfitalpha j(s) =

n\sum 
i=1

\bfitalpha ijlsi(s).

The conditions for \bfH (s, p) = \bfD (s, p) - 1\bfN (s, p) given by (4.8) can be analogously derived
by applying conditions for the one-variable rational matrix from Lemma 4.1 while keeping one
variable fixed.

Sampled data is partitioned as in the SISO case (3.8). The interpolation conditions at
the Lagrange points, \bfH (\lambda i, \pi j) = \bfW ij , are satisfied by setting \bfitbeta ij = \bfW ij\bfitalpha ij for ny \geq nu

and \bfitbeta ij = \bfitalpha ij\bfW ij for ny \leq nu. Parameters \bfitalpha ij are determined by imposing additional
interpolation conditions on \bfH (s, p). Interpolation conditions \bfH (\mu h, \nu d) = \bfV hd at the nodes
(\mu h, \nu d), h= 1 : n,d= 1 :m, can be expressed in the following matrix form:

\BbbL r
2\BbbA r

2 = \bfzero for ny \geq nu, \BbbL l
2\BbbA l

2 = \bfzero for ny \leq nu.

Here, the two-variable MIMO Loewner matrices \BbbL r
2 and \BbbL l

2 have the same structure as in
(3.9), with matrix-valued entries,

(4.11) [cr]h,di,j =
\bfV hd  - \bfW ij

(\mu h  - \lambda i)(\nu d  - \pi j)
, [cl]h,di,j =

\bfV \ast 
hd  - \bfW \ast 

ij

(\mu h  - \lambda i)(\nu d  - \pi j)
.
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3147

The null vectors of \BbbL r
2 and \BbbL l

2 are given as

(4.12)
\BbbA r
2 =

\bigl[ 
\bfitalpha \ast 

11 . . . \bfitalpha \ast 
1m . . . \bfitalpha \ast 

n1 . . . \bfitalpha \ast 
nm

\bigr] \ast 
,

\BbbA l
2 =

\bigl[ 
\bfitalpha 11 . . . \bfitalpha 1m . . . \bfitalpha n1 . . . \bfitalpha nm

\bigr] \ast 
.

Analogously to the SISO theory presented in [17], we introduce matrices \BbbL r/l
\lambda i

and \BbbL r/l
\pi j , one-

variable MIMO Loewner matrices with the block matrix structure associated with the ith row
and the jth column of \bfPhi (3.8), respectively. Interpolation conditions at nodes (\lambda i, \nu d), for a
fixed \lambda i and d= 1 :m can then be written as

\BbbL r
\lambda i
\BbbA r
\lambda i
=

\left[    
\bfPhi i,m+1 - \bfW i1

\nu 1 - \pi 1
. . . \bfPhi i,m+1 - \bfW im

\nu 1 - \pi m

...
. . .

...
\bfPhi i,M - \bfW i1

\nu n - \pi 1
. . . \bfPhi i,M - \bfW im

\nu n - \pi m

\right]    
\left[   \bfitalpha \lambda i1

...
\bfitalpha \lambda im

\right]   = \bfzero for ny \geq nu,

while the interpolation conditions at nodes (\mu h, \pi j), for a fixed \pi j and h= 1 : n are given as

\BbbL r
\pi j
\BbbA r
\pi j

=

\left[    
\bfPhi n+1,j - \bfW 1j

\mu 1 - \lambda 1
. . . \bfPhi n+1,j - \bfW nj

\mu 1 - \lambda n

...
. . .

...
\bfPhi N,j - \bfW 1j

\mu n - \lambda 1
. . . \bfPhi N,j - \bfW nj

\mu n - \lambda n

\right]    
\left[   \bfitalpha \pi 1j

...
\bfitalpha \pi nj

\right]   = \bfzero for ny \geq nu.

If ny \leq nu, the left counterparts of \BbbL r
\lambda i

and \BbbL r
\pi j
, obtained by plugging the transpose values of

the sampled data, \BbbL l
\lambda i
(\bfPhi ) =\BbbL r

\lambda i
(\bfPhi \ast ), \BbbL l

\pi j
(\bfPhi ) =\BbbL r

\pi j
(\bfPhi \ast ), are used. In this case, the associated

null vectors also contain transpose of coefficients. Finally, we can write all the interpolation
conditions, which include the whole sampled set, using a single matrix \^\BbbL 2,

(4.13) \^\BbbL r

2
\^\BbbA r

2 =

\left[  \BbbL r
\lambda 

\BbbL r
\pi 

\BbbL r
2

\right]  \^\BbbA r

2 = \bfzero for ny \geq nu, \^\BbbL l

2
\^\BbbA l

2 =

\left[  \BbbL l
\lambda 

\BbbL l
\pi 

\BbbL l
2

\right]  \^\BbbA l

2 = \bfzero for ny \leq nu,

where

\BbbL r/l
\lambda =

\left[    
\BbbL r/l
\lambda 1

. . .

\BbbL r/l
\lambda n

\right]    ,

\BbbL r/l
\pi =

\left[    
\BbbL r/l
\pi 1 (:,1)

. . .

\BbbL r/l
\pi m(:,1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| . . .
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\BbbL r/l
\pi 1 (:, n)

. . .

\BbbL r/l
\pi m(:, n)

\right]    .
Theorem 4.7. If the sampled data is obtained by sampling a two-variable rational matrix,

it follows that

rank \BbbL r/l
2 = rank

\Biggl[ 
\BbbL r/l
\lambda 

\BbbL r/l
\pi 

\Biggr] 
= rank \^\BbbL r/l

2 and Ker \BbbL r/l
2 =Ker

\Biggl[ 
\BbbL r/l
\lambda 

\BbbL r/l
\pi 

\Biggr] 
=Ker \^\BbbL r/l

2 .
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3148 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

According to Theorem 4.7, the null spaces of \BbbL r/l
2 and \^\BbbL r/l

2 are equal when the samples
originate from a two-variable rational matrix. These null spaces, according to the proof of
Theorem 4.7 given in Appendix C.5, can be formed by multiplying the null vectors of the
one-variable MIMO Loewner matrices, as demonstrated in [4] for the SISO case. Therefore,
taking into account Theorem 4.3, we can conclude that for the sufficient amount of data

(n> n,m>m) there will exist a null space of \BbbL r/l
2 and \^\BbbL r/l

2 . Under the condition of full-rank
coefficients \bfitalpha ij , the sampled rational matrix is reconstructed in the barycentric form (4.8)
from the null space of the two-variable MIMO Loewner matrix.

Theorem 4.8.
(a) Descriptor realizations of \bfH (s, p) =\bfN (s, p)\bfD (s, p) - 1 and \bfH (s, p) =\bfD (s, p) - 1\bfN (s, p) as

in (4.8) are given with parameterized versions of (4.5) and (4.6), respectively, obtained
by replacing the coefficients \bfitalpha and \bfitbeta with \~\bfitalpha (p) and \~\bfitbeta (p) from (4.10b).

(b) Descriptor realization given with parameterized (4.5) is C-controllable and R-observable
if and only if \bfN (s, p) and \bfD (s, p) are the right coprime two-variable polynomial ma-
trices, i.e., [\bfN (s, p)\ast ,\bfD (s, p)\ast ]\ast has the full column rank for all finite s, p \in \BbbC (4.9).
Descriptor realization given with parameterized (4.6) is C-observable and R-controllable
if and only if \bfN (s, p) and \bfD (s, p) are the left coprime two-variable polynomial matrices,
i.e., [\bfN (s, p),\bfD (s, p)] has the full row rank for all finite s, p\in \BbbC .

(c) Descriptor realization given with parameterized (4.5) is minimal if and only if \bfN (s, p)
and \bfD (s, p) are the right coprime two-variable polynomial matrices and

\sum n
i=1

\~\bfitbeta i(p)
has the full column rank for all p\in \BbbC . Descriptor realization given with parameterized
(4.6) is minimal if and only if \bfN (s, p) and \bfD (s, p) are the left coprime two-variable
polynomial matrices and

\sum n
i=1

\~\bfitbeta i(p) has the full row rank for all p\in \BbbC .
Remark. Here, just as in the rest of the paper, controllability and observability refer to

controllability and observability over p \in \BbbC . Again, as in the nonparametric case, we see
that introduction of the left polynomial matrix fraction form is necessary to obtain minimal
realization.

The proof of Theorem 4.8 is analogous to the proof of Theorem 4.4 given in Appendix
C.4. Realizations given with (4.8) are of order k = nnmin and, when minimal, k = kmin =
n+nmin. The latter follows from Lemma 4.6. Therefore, as in the one-variable rational matrix
interpolation, the rational matrix cannot always be reconstructed in the minimal descriptor
form. However, the presented framework is a useful tool for the low-order parametric system
identification and model reduction, where the aforementioned limitation tends to diminish.

4.2.2. Identification of low-order parametric descriptor systems. Given an arbitrary
input set, obtained by sampling a parameter-dependent rational or nonrational matrix, we
seek a rational matrix of low-order,

\^\bfH (s, p) =

\left(  n\sum 
i=1

m\sum 
j=1

\bfW ij \^\bfitalpha ij

(s - \lambda i)(p - \pi j)

\right)  \left(  n\sum 
i=1

m\sum 
j=1

\^\bfitalpha ij

(s - \lambda i)(p - \pi j)

\right)   - 1

for ny \geq nu,(4.14a)
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\^\bfH (s, p) =

\left(  n\sum 
i=1

m\sum 
j=1

\^\bfitalpha ij

(s - \lambda i)(p - \pi j)

\right)   - 1\left(  n\sum 
i=1

m\sum 
j=1

\^\bfitalpha ij\bfW ij

(s - \lambda i)(p - \pi j)

\right)  for ny \leq nu,(4.14b)

which accurately approximates the sampled data, and its minimal descriptor realization. We
determine the desired low degrees \^n and \^m (divisible by nmin) of \^\bfH (s, p) based on the singular
value decomposition of the one-variable Loewner matrices from [25]. This is done according
to (3.10) where the rank is calculated with some sufficiently small, nonzero tolerance. Then
we partition the data such that n = \^n/nmin + 1 and m = \^m/nmin + 1. With this setting,

MIMO \^\BbbL r/l

2 is usually numerically full-rank, and coefficients \^\bfitalpha ij are obtained from the nmin

right singular vectors associated with the nmin smallest singular values of \^\BbbL r/l

2 . Rational
approximant \^\bfH (s, p) = \^\bfN (s, p) \^\bfD (s, p) - 1 or \^\bfH (s, p) = \^\bfD (s, p) - 1 \^\bfN (s, p) tends to obtain the
desired degrees \^n and \^m, which are the maximum degrees for chosen n and m, and the
coefficients \^\bfitalpha ij tend to be full-rank matrices. Therefore, according to Lemma 4.6, the obtained
numerator and denominator polynomial matrices \^\bfN (s, p) and \^\bfD (s, p) are coprime, and the
descriptor realization is C-controllable and R-observable (C-observable and R-controllable).
Furthermore, minimality of realization over p\in \BbbC is achieved for nonsquare transfer matrices,
while for square matrices the system is usually minimal over p \in \BbbC \setminus \{ rp\} , where rp denote
zeros of determinant of

\sum n
i=1

\~\bfitbeta i(p) (given by (4.10b)). The procedure for low-order state-
space identification is summarized in Algorithm 4.1.

Rational matrix \^\bfH (s, p) as in (4.7) interpolates the sampled set at the Lagrange nodes
(\lambda i, \pi j) by definition, for nonsingular \^\bfitalpha ij . The pointwise approximation error at the rest of
the nodes is given in Lemma 4.9.

Lemma 4.9. Let \^\bfSigma = diag(\^\sigma 1, . . . , \^\sigma nmin
) be the matrix of the nmin smallest singular values

of \^\BbbL r/l

2 , and let \^\bfX , \^\bfY be the associated nmin right and left singular vectors, \^\bfY = [ \^\bfY \ast 
\lambda 1
, . . . , \^\bfY \ast 

\lambda n
| 

\^\bfY \ast 
\pi 1
, . . . , \^\bfY \ast 

\pi m
| \bfY \ast 

2,11, . . . ,\bfY 
\ast 
2,nm]\ast , \^\bfY \ast 

\lambda i
= [ \^\bfY \ast 

\lambda i,1
, . . . , \^\bfY \ast 

\lambda i,m
]\ast , \^\bfY \ast 

\pi j
= [ \^\bfY \ast 

\pi j ,1, . . . ,
\^\bfY \ast 
\pi j ,n]

\ast . Then,

by setting \^\BbbA r/l

2 = \^\bfX , the pointwise approximation error matrix for ny \geq nu is given as

\bfE rr(\lambda i, \nu d) =\bfPhi i,m+d  - \^\bfH (\lambda i, \nu d) = \^\bfY \lambda i,d
\^\bfSigma 

\left(  m\sum 
j=1

\^\bfitalpha ij

\nu d  - \pi j

\right)   - 1

,

\bfE rr(\mu h, \pi j) =\bfPhi n+h,j  - \^\bfH (\mu h, \pi j) = \^\bfY \pi j ,h
\^\bfSigma 

\Biggl( 
n\sum 

i=1

\^\bfitalpha ij

\mu h  - \lambda i

\Biggr)  - 1

,

\bfE rr(\mu h, \nu d) =\bfV hd  - \^\bfH (\mu h, \nu d) = \^\bfY 2,hd
\^\bfSigma 

\left(  n\sum 
i=1

m\sum 
j=1

\^\bfitalpha ij

(\mu h  - \lambda i)(\nu d  - \pi j)

\right)   - 1

,

for i= 1 : n,h= 1 : n, j = 1 :m,d= 1 :m.

Lemma 4.9 extends Corollary 4.3 in [17] to the MIMO case. It shows that for rational
approximant \^\bfH (s, p) given by (4.14a), each entry of the pointwise approximation error matrix
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3150 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone Identification of low-order parametric MIMO descriptor systems.

\bfI \bfn \bfp \bfu \bft : Sampled transfer matrix \{ si, pj ,\bfPhi ij | si \in \BbbC , pj \in \BbbC ,\bfPhi ij \in \BbbC ny\times nu\} ,(4.15)

i= 1 :N,j = 1 :M(4.16)

\bfO \bfu \bft \bfp \bfu \bft : Parametric descriptor system \^S(p) = (\^\bfE , \^\bfA (p), \^\bfB , \^\bfC (p))(4.17)

1: \bff \bfo \bfr i= 1 :N \bfd \bfo 
2: Construct one-variable \BbbL (si) from [25]
3: \bfe \bfn \bfd \bff \bfo \bfr 
4: \bff \bfo \bfr j = 1 :M \bfd \bfo 
5: Construct one-variable \BbbL (pj) from [25]
6: \bfe \bfn \bfd \bff \bfo \bfr 
7: Determine reduced degrees \^n, \^m (divisible by nmin): \^n\leftarrow max (rank(\BbbL (pj), \sigma minn

)),
j = 1 :M , \^m\leftarrow max(rank(\BbbL (si), \sigma minm

)), i=1 :N , for some small nonzero \sigma minn
, \sigma \mathrm{m}\mathrm{i}\mathrm{n}m

8: Partition the data such that n= \^n/nmin + 1, m= \^m/nmin + 1 for nmin=min(ny, nu)

9: Construct \^\BbbL r/l

2 as in (3.9) with entries given by (4.11)

10: Calculate singular value decomposition: [ \^\bfY 2, \^\bfSigma 2, \^\bfX 2] = svd(\^\BbbL r/l

2 );

11: \^\BbbA r/l

2 \leftarrow \^\bfX 2(:, end - nmin + 1 : end);

12: Calculate coefficients \~\bfitbeta i(p) and \~\bfitalpha i(p), i= 1 : n, as in (4.10b)

13: Build realization \^S(p) according to (4.5) for ny \geq nu and (4.6) for ny \leq nu with
coefficients \~\bfitbeta i(p) and \~\bfitalpha i(p)

is given as a linear combination of the nmin smallest singular values of matrix \^\BbbL 2. The same
holds for \^\bfH (s, p) given by (4.14b).

In conclusion, the presented methodology allows us to find the low-order two-variable
rational approximant of the given sampled data and its minimal realization. The user can
choose degrees of the rational approximant by setting appropriate values for n and m that are
suggested by the singular value decomposition of the one-variable Loewner matrices.

5. Stability-preserving postprocessing methods. Stability of the descriptor systems built
with the Loewner frameworks presented in section 4 is not guaranteed. Therefore, to accu-
rately capture the dynamic behavior of a stable original system, a stability-preserving post-
processing method is needed. In this work, we apply the approach developed in [8]. This
postprocessing method combines the commonly used sign-pole-flipping approach with the it-
erative procedure for improving the accuracy after stability enforcement. The method can
be applied to a nonparametric descriptor system or to a parametric system which is evalu-
ated for a fixed parameter value. Therefore, we summarize the procedure as given for the
nonparametric descriptor realization.

First, matrix pencil ( \^\bfA , \^\bfE ) is brought to Schur form, for which the generalized eigenvalues
are defined by diagonal (real poles) or block diagonal terms (complex poles). The unstable
poles are mirrored by flipping the signs on diagonal elements of matrix \^\bfE for real poles, and
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3151

flipping the signs of elements on the diagonal which define complex poles of matrix \^\bfA , as
suggested in [8]. This yields the matrix pencil ( \^\bfA s, \^\bfE s) with stable poles. However, accuracy
of the transfer matrix might be lost. To improve the accuracy of the stable system with
mirrored poles, matrices \^\bfB and \^\bfC are updated to mitigate the effect of changing matrices \^\bfA 
and \^\bfE . This is done iteratively by solving the following least-squares problem:\left[   

\^\bfC s,i(s1 \^\bfE s  - \^\bfA s)
 - 1

...
\^\bfC s,i(sN \^\bfE s  - \^\bfA s)

 - 1

\right]   \^\bfB s,i+1 =

\left[   
\^\bfH (s1)
...

\^\bfH (sN )

\right]   ,
\^\bfC s,i+1

\bigl[ 
(s1 \^\bfE s  - \^\bfA s)

 - 1 \^\bfB s,i+1 . . . (sN \^\bfE s  - \^\bfA s)
 - 1 \^\bfB s,i+1

\bigr] 
=
\bigl[ 
\^\bfH (s1) . . . \^\bfH (sN )

\bigr] 
,

until a specific tolerance or a maximum number of iterations is reached. For the procedure of
avoiding complex arithmetic and obtaining improved matrices with real entries, in the case of
complex data, we refer the reader to the original work [8].

6. Examples. In this section we apply the methodologies presented in section 4 to several
examples. First, we illustrate the approaches for solving one-variable and two-variable rational
matrix interpolation problems in the Loewner framework, and then we apply the developed
methodology to low-order parametric state-space identification of an aerodynamic system.

6.1. One-variable rational matrix. Here we illustrate the approach for solving the one-
variable rational matrix interpolation problem from subsubsection 4.1.1 by reconstructing a
rectangular rational matrix in the minimal descriptor form from its own samples. We consider
both the case when ny >nu and the case when ny <nu.

(a) We consider an adapted version of the rational matrix used in [23], with ny >nu and
of degree n= 2,

\bfH 1(s) =

\left[   
1

1+2s
 - 1

1+2s

2+5s
1+2s

3+7s
1+2s

1+6s
1+2s

4+9s
1+2s

\right]   .
To reconstruct this rational matrix in the minimal realization form, we need to use a rational
interpolant in the right polynomial matrix fraction description (4.1a) for interpolation of
its samples. The dimension of the associated realization (given by (4.5)) when minimal is
kmin = n+nu = 4. Therefore, the number of Lagrange nodes is chosen to be n= n/nu+1= 2.
The function is evaluated at four points, \lambda 1 = 0, \lambda 2 = 2, \mu 1 = 1, \mu 2 = 3, and the right MIMO
Loewner matrix (4.2a) is built as follows:

(6.1) \BbbL r =

\left[            

 - 2
3

2
3  - 

2
5

2
5

1
3

1
3

1
15

1
15

4
3

1
3

4
15

1
15

 - 2
7

2
7  - 

2
35

2
35

1
7

1
7

1
35

1
35

4
7

1
7

4
35

1
35

\right]            
.
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3152 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

The rank of \BbbL r is equal to n= 2, and therefore its null space, here given in rational basis, is
spanned with two vectors,

\BbbA r =

\left[    
 - 0.2 0
0  - 0.2
1 0
0 1

\right]    .
The numerator and denominator coefficients are the following:

(6.2)

\bfitalpha 1 = - 0.2\bfI 2\times 2, \bfitalpha 2 = \bfI 2\times 2,

\bfitbeta 1 =

\left[    - 
1
5

1
5

 - 2
5  - 3

5

 - 1
5  - 4

5

\right]   , \bfitbeta 2 =

\left[   
1
5  - 1

5

12
5

17
5

13
5

22
5

\right]   .
Finally, we reconstruct the rational matrix \bfH 1(s) in the descriptor form using (4.5),

(6.3)

\bfE =

\biggl[ 
\bfI 2\times 2  - \bfI 2\times 2

\bfzero 2\times 2 \bfzero 2\times 2

\biggr] 
, \bfA =

\biggl[ 
\bfzero 2\times 2  - 2\bfI 2\times 2

\bfitalpha 1 \bfitalpha 2

\biggr] 
,

\bfC =
\bigl[ 
\bfitbeta 1 \bfitbeta 2

\bigr] 
, \bfB =

\biggl[ 
\bfzero 

\bfI 2\times 2

\biggr] 
.

Constructed realization is minimal since it is of dimension kmin = n+nu = 4--, and
\sum 2

i=1\bfitbeta i has
full column rank (see Theorem 4.4). We conclude that it is possible to reconstruct the given
rational matrix in the minimal descriptor form using the framework from subsubsection 4.1.1.

(b) Consider the transpose of the rectangular rational matrix \bfH 1(s),

\bfH 2(s) =

\Biggl[ 
1

1+2s
2+5s
1+2s

1+6s
1+2s

 - 1
1+2s

3+7s
1+2s

4+9s
1+2s

\Biggr] 
.

Since ny < nu, we use rational interpolant in the left polynomial matrix fraction description
(4.1b) to reconstruct this rational matrix in the minimal realization form with kmin = n+ny =
4. For \bfH 2(s), the left MIMO Loewner matrix is the same as the right MIMO Loewner matrix
(6.1) from the previous example, \BbbL l(\bfH 2(s)) = \BbbL r(\bfH 1(s)), and coefficient matrices equal the
transpose of \bfitalpha i,\bfitbeta i as in (6.2). Descriptor realization is then given with (4.6),

(6.4)
\bfE =

\biggl[ 
\bfI 2\times 2 \bfzero 2\times 2

 - \bfI 2\times 2 \bfzero 2\times 2

\biggr] 
, \bfA =

\biggl[ 
\bfzero 2\times 2 \bfitalpha 1

 - 2\bfI 2\times 2 \bfitalpha 2

\biggr] 
,

\bfC =
\bigl[ 
\bfzero \bfI 2\times 2

\bigr] 
, \bfB =

\bigl[ 
\bfitbeta 1 \bfitbeta 2

\bigr] \ast 
.

This realization recovers the original matrix \bfH 2(s) and is C-controllable and C-observable,
i.e., minimal.

6.2. Two-variable rational matrix. Next, we illustrate the approach for solving the two-
variable rational matrix interpolation problem from subsubsection 4.2.1 by reconstructing a
rectangular two-variable rational matrix in the minimal descriptor form from its own samples.
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Again, as in the nonparametric case, we consider both the case when ny > nu and the case
when ny <nu.

(a) We adapt the two-variable rational matrix used in [23] to obtain a rectangular matrix
with ny >nu,

\bfH 1(s, p) =

\left[    
s+1

2s+3p+sp - 1
s - 1

2s+3p+sp - 1

s+5p+9sp - 1
2s+3p+sp - 1

3s+7p+11sp - 3
2s+3p+sp - 1

2s+6p+10sp - 2
2s+3p+sp - 1

4s+8p+12sp - 4
2s+3p+sp - 1

\right]    .
The degrees of \bfH 1(s, p) in s and p are n = 2 and m = 2. We want to reconstruct this two-
variable rational matrix in the minimal realization form, and therefore we use the parameter-
ized barycentric formula in the right polynomial matrix fraction description (4.8a). Further-
more, the total number of Lagrange nodes is set to n= n/nmin+1= 2 andm=m/nmin+1= 2.
The function is evaluated at four complex variable values, \lambda 1 = 1/2, \lambda 2 = 2, \mu 1 = 3/2, \mu 2 = 3,
and four parameter values, \pi 1 =  - 2, \pi 2 =  - 1, \nu 1 =  - 3/2, \nu 2 =  - 1/2. The two-variable right
MIMO Loewner matrix \^\BbbL r

2 (defined in (3.9) and (4.12)) of dimension 12\times 8 is built. The rank
of \^\BbbL r

2 is equal to 6, and therefore its null space is spanned with two vectors,

\BbbA r
2 =

\biggl[ 
7
2 0  - 7

4 0  - 7
2 0 1 0

0 7
2 0  - 7

4 0  - 7
2 0 1

\biggr] \ast 
.

Using (3.12), parameter-dependent coefficients are obtained,

(6.5)

\~\bfitalpha 1(p) =
7

4
p\bfI 2\times 2, \~\bfitbeta 1(p) =

\left[  3
4  - 1

4
19
4 p - 

1
4

25
4 p - 

3
4

11
2 p - 

1
2 7p - 1

\right]  ,
\~\bfitalpha 2(p) =

\biggl( 
 - 5

2
p - 3

2

\biggr) 
\bfI 2\times 2, \~\bfitbeta 2(p) =

\left[   - 3
2  - 1

2
 - 23

2 p - 
1
2  - 29

2 p - 
3
2

 - 13p - 1  - 16p - 2

\right]  .
Finally, descriptor realization which recovers the original two-variable matrix is obtained from
(4.5) by replacing coefficients \bfitalpha i and \bfitbeta i with \~\bfitalpha i(p) and \~\bfitbeta i(p),

\bfE =

\biggl[ 
\bfI 2\times 2  - \bfI 2\times 2

\bfzero 2\times 2 \bfzero 2\times 2

\biggr] 
, \bfA (p) =

\biggl[ 
0.5\bfI 2\times 2  - 2\bfI 2\times 2

 - \~\bfitalpha 1(p)  - \~\bfitalpha 2(p)

\biggr] 
,

\bfC (p) =
\bigl[ 
\~\bfitbeta 1(p)

\~\bfitbeta 2(p)
\bigr] 
, \bfB =

\biggl[ 
\bfzero 

\bfI 2\times 2

\biggr] 
.

This realization meets the requirements for minimality over p\in \BbbC stated in Theorem 4.8.
(b) Consider the transpose of the rectangular rational matrix \bfH 1(s, p),

\bfH 2(s, p) =

\Biggl[ 
s+1

2s+3p+sp - 1
s+5p+9sp - 1
2s+3p+sp - 1

2s+6p+10sp - 2
2s+3p+sp - 1

s - 1
2s+3p+sp - 1

3s+7p+11sp - 3
2s+3p+sp - 1

4s+8p+12sp - 4
2s+3p+sp - 1

\Biggr] 
.

We reconstruct this two-variable rational matrix with ny < nu using the parameterized
barycentric formula in the left polynomial matrix fraction description (4.8b). Since \bfH 2(s, p) =
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3154 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

\bfH \ast 
1(s, p), it follows that \BbbL l

2(\bfH 2(s, p)) = \BbbL r
2(\bfH 1(s, p)), and thus the polynomial coefficient ma-

trices are the transpose of \~\bfitalpha i(p) and \~\bfitbeta i(p) from the previous example. The descriptor system
can be obtained from (4.6) by replacing coefficients \bfitalpha i and \bfitbeta i with \~\bfitalpha i(p) and \~\bfitbeta 

\ast 
i (p) from

(6.5),

\bfE =

\biggl[ 
\bfI 2\times 2 \bfzero 2\times 2

 - \bfI 2\times 2 \bfzero 2\times 2

\biggr] 
, \bfA (p) =

\biggl[ 
0.5\bfI 2\times 2  - \~\bfitalpha 1(p)
 - 2\bfI 2\times 2  - \~\bfitalpha 2(p)

\biggr] 
,

\bfC =
\bigl[ 
\bfzero \bfI 2\times 2

\bigr] 
, \bfB (p) =

\Biggl[ 
\~\bfitbeta 
\ast 
1(p)

\~\bfitbeta 
\ast 
2(p)

\Biggr] 
.

This realization is minimal over p\in \BbbC .
We conclude that the developed approach for two-variable rational matrix interpolation is

able to reconstruct the given two-variable rational matrices from its samples in the minimal
descriptor form.

6.3. Aerodynamic system. Here we apply the developed parametric Loewner framework
to low-order parametric state-space identification of an aerodynamic system. The considered
aerodynamic system models the flow around the aircraft wing section (modeled as a flat plate)
with three degrees of freedom, namely, heave h, pitch \theta , and flap deflection \delta . The system is
described with 2\times 3 transfer matrix \bfH a(s, p),

\bfH a(s, p) =

\biggl[ 
Clh Cl\theta Cl\delta 

Cmh
Cm\theta 

Cm\delta 

\biggr] 
.

The first row and the second row contain derivatives of lift coefficient Cl and moment coefficient
Cm with respect to h, \theta --, and \delta . The considered parameter is Mach number which is a real
number, p \in \BbbR . Due to the nature of aerodynamic loads, \bfH a(s, p) is not a rational matrix.
Furthermore, the considered aerodynamic system is asymptotically stable. As stated in section
2, our goal is to find the parametric descriptor system of low order which closely approximates
\bfH a(s, p) and accurately captures dynamic behavior of the original system.

First, the aerodynamic transfer matrix is sampled, \bfPhi ij =\bfH a(si, pj), for N = 40 logarith-
mically spaced frequency values on the interval s= i\omega \in [4 \cdot 10 - 6 600] and M = 30 parameter
values, p\in [0.1 0.7]. Sampling of the transfer matrix in p is logarithmic with higher density of
sampling points at the edges of the observed interval. This is done to avoid the Runge effect.
To ensure the real system, we add complex conjugate pairs of data for each frequency (except
the first one which is approximately zero) which results in a total of 2N  - 1 = 79 sampling
points in s. The second step is to find the appropriate degrees of rational approximant \^\bfH (s, p)
in s and p such that it accurately approximates the sampled set. This is done by constructing
one-variable Loewner matrices \BbbL (pj) and \BbbL (si) from [25] for all s and p.

Figure 1 shows that all \BbbL (pj) and \BbbL (si) have full numerical ranks, which is characteristic for
nonrational matrix samples. Desired degrees are then chosen as \^n=max (rank(\BbbL (pj), \sigma minn

)),
j = 1 : M , and \^m =max(rank(\BbbL (si), \sigma minm

)), i = 1 : N , such that the tolerances \sigma minn
and

\sigma minm
are sufficiently small and the degrees are divisible by nmin. In order to analyze the

influence of the degree on approximation error, we build two descriptor systems, \^S1(p) and
\^S2(p), with the associated rational matrices \^\bfH 1(s, p) and \^\bfH 2(s, p). We choose (\^n1, \^m1) =
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(a) \BbbL (pj), j = 1 : M
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(b) \BbbL (si), i = 1 : N

Figure 1. Singular values of one-variable Loewner matrices \BbbL (pj) and \BbbL (si) for j = 1 :M, i= 1 :N .

(36,14) for \^\bfH 1(s, p) and (\^n2, \^m2) = (20,10) for \^\bfH 1(s, p) (which correspond to sufficiently
small singular value decomposition tolerances as visible from Figure 1). Corresponding orders
are k1 = 38 and k2 = 22. Next, we set n1 = \^n1/2 + 1 = 19, m1 = \^m1/2 + 1 = 8 and
n2 = \^n2/2 + 1 = 11, m2 = \^m2/2 + 1 = 6. Since ny < nu, we build the left (MIMO) Loewner

matrix \^\BbbL l

2 given by (4.13) and obtain coefficients \^\bfitalpha ij from the right singular vectors associated
to its two smallest singular values. Indeed, the built rational matrices obtain maximum degrees
\^n and \^m for given n andm, as expected. This can be checked by generating a sufficient amount
of samples of \^\bfH 1(s, p) and \^\bfH 2(s, p) and calculating the ranks of the associated one-variable
Loewner matrices. Furthermore, \^\bfitalpha ij are full-rank matrices, and the sum of obtained matrices
\~\bfitbeta i(p) is of full row rank for all p \in \BbbR . Therefore, both descriptor systems are minimal over
p\in \BbbR (this follows from Lemma 4.6 and Theorem 4.8).

Next, we analyze the approximation errors of the two descriptor systems in the frequency
domain. For this purpose, the aerodynamic transfer matrix is additionally calculated on a
finer grid which consist of 100 linearly spaced parameter values on the observed range and
the sample points in s. To illustrate the accuracy of the two descriptor systems, we show the
absolute values of the transfer matrix entries (1,2) and (2,2) for two parameter values, p= 0.16
and p= 0.6, in Figures 2a and 2b. The first parameter value is contained in the sampled set and
is partitioned as the Lagrange node \pi . The second parameter value is contained in the finer
set and not in the sampled set. We can see that for p= 0.16, both systems have approximation
errors equal to (numerical) zero at s= \lambda i, which holds by construction. For both parameters,
\^\bfH 1(s, p) approximates the data more accurately. Additionally, we check the accuracy of the
models on the whole observed interval by calculating the normalized \scrH 2 norm (defined in
[22]) of the pointwise error matrix \bfE rr(s, p). The error matrix is calculated on the fine grid
and shown in Figure 2c. Again, as expected, \^S1(p) shows smaller approximation errors for
all p. This is consistent with Lemma 4.9 since the smallest singular values of the associated
\^\BbbL 2 for (\^n2, \^m2) = (36,14) are (\^\sigma 1 = 9.3 \cdot 10 - 5, \^\sigma 2 = 8.3 \cdot 10 - 5), while for (\^n2, \^m2) = (20,10)
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(a) \bfH (s, p) entry (1, 2)
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(c) Normalized \scrH 2 norm of pointwise error matrix.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

15

20

25

30

35

40

# of unstable poles (n=36, m=14)

# of unstable poles (n=20, m=10)

(d) Dimensions and number of unstable poles.

Figure 2. Descriptor systems \^S1(p) with degrees (\^n1, \^m1) = (38,14) and \^S2(p) with degrees (\^n2,
\^m2)=(20,10).

the smallest singular values are (\^\sigma 1 = 9.8 \cdot 10 - 4, \^\sigma 2 = 8 \cdot 10 - 4). Moreover, we can see that
the approximation error is increasing with increasing parameter value, as the transfer matrix
becomes more curvy.

In addition to the transfer matrix, the modeled system also needs to closely match the
dynamic behavior of the original system. Thus, the poles of the system need to be constrained
to the left half of the complex plane since the original system is stable. However, the Loewner
framework does not guarantee preservation of the stability. This is shown in Figure 2d, which
shows the number of unstable poles of \^S1(p) and \^S2(p). For both systems, this number is
significant. Therefore we apply the postprocessing stability-preserving technique explained in
section 5. For the sake of brevity, we continue our analysis only for \^S2(p). The accuracy of
\^\bfH s(s, p) (of degrees \^n2 and \^m2) associated with the stable system \^Ss is illustrated in Figures
3a and 3b. It can be seen that the accuracy is still high. This holds for the whole observed
interval of parameter p, as shown in Figure 3c.
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(a) \^\bfH (s, p) entry (1, 2)
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(c) Normalized \scrH 2 norm of pointwise error matrix

Figure 3. Unstable descriptor system \^S2(p) and stable descriptor system \^Ss with degrees (\^n, \^m) = (20,10).

Finally, we can evaluate the dynamic behavior of the built aerodynamic model. For this
purpose, the system is excited with a pulse function given as

\bfu (t) =

\left[  4uh0(t/t0)2e(2 - 1/(1 - t/t0))

4u\theta 0(t/t0)
2e(2 - 1/(1 - t/t0))

4u\delta 0(t/t0)
2e(2 - 1/(1 - t/t0))

\right]  , 0\leq t\leq t0,

\bfu (t) = \bfzero , t > t0,

where t0 = 0.5s and uh0 = 0.01, u\theta 0 = u\delta 0 = \pi /180. The input is band-limited, \omega \in [0 400]
rad/s. State-space equations are solved for time t \in [0 0.1]s using the differential algebraic
equation solver [30] based on the algorithms described in [29]. The reference solution is
calculated in the frequency domain and brought back to the time domain by means of the
fast Fourier transform. In order to avoid introducing the interpolation error in the frequency
domain solution, a new set of aerodynamic transfer matrices is calculated at the reduced
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Figure 4. Dynamic responses, Cl and Cm, to pulse excitation predicted with stable descriptor system.

frequencies which are defined with the prescribed time. Dynamic responses Cl and Cm are
shown for the same two parameters as before, p = 0.6 and p = 0.16, in Figure 4. Consistent
with the other results, the accuracy of the dynamic responses is higher for p= 0.16. We can
conclude that, in addition to good accuracy in the frequency domain, built models accurately
capture the dynamic behavior of the original system in the time domain as well.

7. Conclusion. We have introduced a novel data-driven method for identification of para-
metric MIMO descriptor systems of low order from transfer matrix samples. The method is
based on the two-variable Lagrange rational matrix interpolation within the Loewner frame-
work. The novelty of the presented method lies in the fact that by introducing the new
barycentric formula in the left and right polynomial matrix fraction forms, construction of
completely controllable and observable parametric descriptor systems is enabled. Reduction of
both the order of the system and complexity of its parameter dependence is done by choosing
low degrees of rational approximant. Appropriate degrees which yield small approximation
errors are suggested by the singular value decomposition of the one-variable Loewner matrices.
First, the proposed approaches for solving the one-variable and two-variable rational matrix
interpolation problems are illustrated on academic examples. In these examples, rational ma-
trices are reconstructed from their samples in the minimal descriptor realization form. The
proposed method is then applied to parametric state-space modeling of aerodynamic loads,
proving that it is capable of identifying minimal descriptor systems of low order and high
accuracy.

Appendix A. Avoiding complex arithmetic. Often in real applications, the variable s is
complex while the parameter p is real. This results in the complex-valued Loewner matrices
and realizations with complex-valued matrices. However, in practice, we want to avoid this.

The procedure for avoiding complex arithmetic and obtaining realization with real-valued
matrices for nonparametric and parametric SISO cases is shown in [16, 17]. Here, we generalize
it to handle MIMO systems.
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3159

A.1. Nonparametric case. Our first step is to augment the complex input data by includ-
ing its complex conjugate pairs. Here we assume that all si are complex except for s1 = \lambda 1,
as in [17]. The data is then partitioned as

[s1, s1, . . . , sN , sN ] =
\bigl[ 
\lambda 1, \lambda 2, \lambda 2, . . . , \lambda nr

, \lambda nr

\bigr] 
\cup 
\bigl[ 
\mu 1, \mu 1, . . . , \mu nl

, \mu nl

\bigr] 
,

where the number of right and left samples is n= 2nr  - 1 and n= 2nl, and the total number
of samples is n+ n = 2N  - 1. Samples \bfPhi are extended and partitioned in the same fashion.
To obtain real coefficients in the barycentric formula, we need to set \bfPhi (si) = \Phi (si) [17].
The resulting Loewner matrix \BbbL as in (3.4) and (4.2) has complex conjugate structure. The
real-valued Loewner matrix is obtained by the unitary transformation

(A.1) \BbbL R =\bfY \BbbL \bfX ,

where

(A.2) \bfY =diag(\bfI nl
\otimes \bfJ )\otimes \bfI nmax

, \bfX =diag(1, \bfI nr - 1 \otimes \bfJ \ast )\otimes \bfI nmin
,

\bfJ is a unitary matrix, \bfJ = 1\surd 
2
[ 1 1
 - \imath \imath ], and nmax = max(ny, nu). This holds for the SISO

Loewner matrix (nmax = nmin = 1) (3.4) as well as the right and left MIMO Loewner matrices
(4.2a), (4.2b). Null vectors of \BbbL R, denoted as \BbbA R, have only real entries and are given by
\BbbA R = \bfX \ast \BbbA . Thus, to avoid complex arithmetic, we calculate singular value decomposition
of \BbbL R and obtain \BbbA (denoted as \bfa as in (3.4) in the SISO case) through transformation.
Once \BbbA is found, we can construct realization (\bfE ,\bfA ,\bfB ,\bfC ) with (3.5), (4.5), (4.6), which has
complex conjugate structure as well. Finally, real-valued state-space matrices are obtained
with the transformation

(A.3)
\bfE R =\bfW \bfE \bfV \ast , \bfA R =\bfW \bfA \bfV \ast , \bfB R =\bfW \bfB , \bfC R =\bfC \bfV \ast for ny \geq nu,

\bfE R =\bfV \bfE \bfW \ast , \bfA R =\bfV \bfA \bfW \ast , \bfB R =\bfV \bfB , \bfC R =\bfC \bfW \ast for ny \leq nu,

where \bfW =diag(
\surd 
2\bfI nr - 1 \otimes \bfJ ,1)\otimes \bfI nmin

and \bfV =diag(1,
\surd 
2\bfI nr - 1 \otimes \bfJ )\otimes \bfI nmin

.

A.2. Parametric case. The procedure for avoiding complex arithmetic in the parametric
case, when p \in \BbbR , is the same as that for the nonparametric case. Transformation matrices
used in the transformation of the two-variable Loewner matrix are given as

\bfY =diag(\bfY 1,\bfY 2,\bfY 3)\otimes \bfI nmin
, \bfX =diag(\bfI m, \bfI nr - 1 \otimes (\bfJ \ast \otimes \bfI m))\otimes \bfI nmin

,

where \bfY 1, \bfY 2, \bfY 3 [17] are

\bfY 1 =diag(\bfI M - m, \bfI nr - 1 \otimes (\bfJ \otimes \bfI M - m)), \bfY 2 = \bfI (N - n+1)m \otimes \bfJ ,

\bfY 3 = \bfI N - n+1 \otimes [\bfI M - m \otimes \bfJ (:,1), \bfI M - m \otimes \bfJ (:,2)].

The real-valued two-variable Loewner matrices, \^\BbbL 2R
and \^\BbbL 2, are then related to each other

according to (A.1). The transformation of realization matrices is the same as that given
by (A.3).
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3160 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

Appendix B. Error bound. If the sampled data originates from a known, continuously
differentiable (in s), matrix function \bfR (s, p), we can obtain the error bound over a desired
interval \scrI of complex variable s rather than just at the sample points. Here we give the error
bound in Frobenius norm,

\| \bfR (s, p) - \^\bfH (s, p)\| F \leq max
s\in \scrI 

\bigm\| \bigm\| \bigm\| d

ds
\bfR (s, p)

\bigm\| \bigm\| \bigm\| 
F
\cdot 

\=n\sum 
i=1

\| \~\bfitalpha i(p)\| F

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 

\=n\sum 
i=1

\~\bfitalpha i(p)

s - \lambda i

\Biggr)  - 1 \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

,

for a fixed p. This expression generalizes the one given in [17, 20] for the SISO case.

Appendix C. Proofs.

C.1. Proof of Theorem \bfthree .\bftwo (b). Conditions for C-controllability,

rank
\bigl[ 
s\bfE  - \bfA ,\bfB 

\bigr] 
= n+ 1 for all finite s\in \BbbC and rank

\bigl[ 
\bfE ,\bfB 

\bigr] 
= n+ 1,

hold by construction. Thus, realization is always C-controllable. For it to be R-observable,
the following must hold:

(C.1) rank
\bigl[ 
(s\bfE  - \bfA )\ast ,\bfC \ast \bigr] \ast = n+ 1 for all finite s\in \BbbC .

If (C.1) fails, there exists a nontrivial null vector \bfx = [x1, x2, . . . , xn+1]
\ast such that

(C.2)

\left[       
s - \lambda 1 \lambda 2  - s

...
. . .

s - \lambda 1 \lambda n+1  - s
\alpha 1 \alpha 2 . . . \alpha n+1

\beta 1 \beta 2 . . . \beta n+1

\right]       
\left[     

x1
x2
...

xn+1

\right]     = \bfzero for some finite s\in \BbbC .

The first n equations (rows) in (C.2) give xi =
s - \lambda 1

s - \lambda i
x1 for i = 2 : n + 1. Therefore, for a

nontrivial \bfx , x1 \not = 0. The last two equations, after multiplying with ls1(s) and taking into
account that x1 \not = 0, yield

d(s) =

n+1\sum 
i=1

\alpha ilsi(s) = 0 and n(s) =

n+1\sum 
i=1

\beta ilsi(s) = 0 for some finite s\in \BbbC .

This implies that the numerator and denominator polynomials, n(s) and d(s), have a common
root, i.e., they are reducible. However, for an H(s) of degree n given with (3.2), this cannot
hold. Therefore, the realization is C-controllable and R-observable.

For the realization to be C-observable, (C.1) and

(C.3) rank
\bigl[ 
\bfE \ast ,\bfB \ast \bigr] \ast = n+ 1
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PARAMETRIC STATE-SPACE MODELING OF MIMO SYSTEMS 3161

need to hold. If (C.3) does not hold, there exists a null vector \bfy = [y, y, . . . , y]\ast such that\left[       
1  - 1
...

. . .

1  - 1
0 0 . . . 0
\beta 1 \beta 2 . . . \beta n+1

\right]       
\left[     
y
y
...
y

\right]     = \bfzero for some finite s\in \BbbC .

This implies that the highest numerator coefficient equals zero,
\sum n+1

i=1 \beta i = 0. This holds only
for strictly proper H(s). Therefore, this realization is minimal for proper and improper H(s),
while for strictly proper H(s) it is C-controllable and R-observable.

C.2. Proof of Theorem 3.3(b). Analogous to the nonparametric case, conditions for C-
controllability (2.3) and (2.4) hold by construction. Furthermore, R-observability condition
(2.5) holds for H(s, p) of degrees (n,m) due to irreducibility of numerator n(s, p) and denomi-
nator d(s, p). It can be shown (similar to subsection C.1) that (2.6) holds only if

\sum n+1
i=1

\~\beta i(p) \not = 0
for every p \in \BbbC . This is only true for H(s, p) that is proper or improper in s for every p \in \BbbC .
Therefore, the realization is C-controllable and C-observable (minimal) if H(s, p) is proper or
improper in s for every p\in \BbbC ; otherwise, it is C-controllable and R-observable.

C.3. Proof of Lemma 4.2. If (4.4a) fails, there exists a nonzero left null vector of the
MIMO generalized controllability matrix, \bfx \ast , and a right null vector of the MIMO generalized
observability matrix, \bfy , such that

\bfx \ast \bigl[ (\lambda 1\bfE  - \bfA ) - 1\bfB . . . (\lambda n\bfE  - \bfA ) - 1\bfB 
\bigr] 
= \bfzero ,(C.4a) \left[   \bfC (\mu 1\bfE  - \bfA ) - 1

...
\bfC (\mu n\bfE  - \bfA ) - 1

\right]   \bfy = \bfzero .(C.4b)

From (C.4a) it follows that a row vector of transfer matrix \bfx \ast (s\bfE  - \bfA ) - 1\bfB has n zeros at
s = \lambda i, i = 1 : n. Therefore, each entry of transfer matrix \bfx \ast (s\bfE  - \bfA ) - 1\bfB ej , where ej is a
unit vector, has n zeros. However, the numerator of \bfx \ast (s\bfE  - \bfA ) - 1\bfB ej has a degree less than
or equal to n, and thus when n > n, it must be identically zero, \bfx \ast (s\bfE  - \bfA ) - 1\bfB = 0. This
violates the requirement that [\bfE ,\bfA ,\bfB ] must be controllable. Similarly, from (C.4b) is follows
that when n > n, numerator e\ast i\bfC (s\bfE  - \bfA ) - 1\bfy must be identically zero. This contradicts the
requirement that [\bfE ,\bfA ,\bfC ] must be observable. The proof for (4.4b) is analogous.

C.4. Proof of Theorem 4.4.
(a) First, we denote the matrix pencil (\bfA ,\bfE ) given with (4.5) as \bfJ (s) and partition it in

the 2\times 2 block form as

\bfJ (s) =

\left[     
(s - \lambda 1)\bfI nu

(\lambda 2  - s)\bfI nu

...
. . .

(s - \lambda 1)\bfI nu
(\lambda n  - s)\bfI nu

\bfitalpha 1 \bfitalpha 2 . . . \bfitalpha n

\right]     =

\biggl[ 
\bfJ 11 \bfJ 12

\bfJ 21 \bfJ 22

\biggr] 
.
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3162 VOJKOVIC, QUERO, POUSSOT-VASSAL, AND VUILLEMIN

After this partition, we can calculate the inverse of \bfJ (s). Since the inverse of \bfJ (s) is
multiplied by \bfB , we are interested only in the last column of \bfJ  - 1(s),

\bfJ  - 1(s)\bfB =

\biggl[ 
(\bfJ 21  - \bfJ 22\bfJ 

 - 1
12 \bfJ 11)

 - 1

 - \bfJ  - 1
12 \bfJ 11(\bfJ 21  - \bfJ 22\bfJ 

 - 1
12 \bfJ 11)

 - 1

\biggr] 
=

\left[     
ls1(
\sum n

i=1 li\bfitalpha i)
 - 1

ls2(
\sum n

i=1 li\bfitalpha i)
 - 1

...

lsn(
\sum n

i=1 li\bfitalpha i)
 - 1

\right]     .
Finally,

\bfC \bfJ  - 1(s)\bfB =

\Biggl( 
n\sum 

i=1

lsi(s)\bfitbeta i

\Biggr) \Biggl( 
n\sum 

i=1

lsi(s)\bfitalpha i

\Biggr)  - 1

=

\Biggl( 
n\sum 

i=1

\bfitbeta i

s - \lambda i

\Biggr) \Biggl( 
n\sum 

i=1

\bfitalpha i

s - \lambda i

\Biggr)  - 1

The proof for (4.6) is analogous.
(b) Realization (4.5) satisfies nonparametric versions of the controllability conditions (2.3)

and (2.4) by construction (for distinct \lambda i). However, the R-observability condition (2.5)
requires [\bfN (s)\ast ,\bfD (s)\ast ]\ast to have full column rank, i.e., requires \bfN (s) and \bfD (s) to be
right coprime. Realization (4.6) is C-observable by construction. Nonparametric R-
controllability condition (2.3) requires [\bfN (s),\bfD (s)] to have full row rank, i.e., requires
\bfN (s) and \bfD (s) to be left coprime.

(c) The descriptor realization given by (4.5) is of dimension k = n \cdot nu. In order for it
to be minimal, \bfN (s) and \bfD (s) need to be right coprime, and condition (2.6) needs
to hold. The latter requires

\sum n
i=1\bfitbeta i to have full column rank. If the two conditions

are fulfilled, the conditions stated in Lemma 4.1 are automatically fulfilled. Therefore
n= (n - 1)nu and kmin = n+ nu. The proof for (4.6) is analogous.

C.5. Proof of Theorem 4.7. First, we denote \BbbA \lambda i
and \BbbA \pi j

as null vectors of \BbbL \lambda i
and

\BbbL \pi j
, respectively. These can be either the right or left Loewner matrices. When the samples

originate from a rational matrix, \BbbA \lambda i
and \BbbA \pi j

relate to the null vector of \BbbL 2, \BbbA 2 as

(C.5) \BbbA \lambda i
= \xi 

\bigl[ 
\bfitalpha i1 \bfitalpha i2 . . . \bfitalpha im

\bigr] 
, \BbbA \pi j

= \gamma 
\bigl[ 
\bfitalpha 1j \bfitalpha 2j . . . \bfitalpha nj

\bigr] 
for some constraints \xi and \gamma . This is analogous to the SISO case given in Main Lemma 2.1
from [4]. Equation (C.5) implies that Theorem 4.7 holds.
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