
ARTICLE IN PRESS

Data-driven modeling and
control of large-scale dynamical
systems in the Loewner
framework
Methodology and applications

Ion Victor Goseaa,∗, Charles Poussot-Vassalb, and
Athanasios C. Antoulasc,d,e

aData-Driven System Reduction and Identification (DRI) Group, Max Planck Institute (MPI),

Magdeburg, Germany, bInformation Processing and Systems Department, ONERA, Toulouse,

France, cElectrical and Computer Engineering (ECE) Department, Rice University, Houston, TX,

United States, dMax Planck Institute, Magdeburg, Germany, eBaylor College of Medicine,

Houston, TX, United States
∗Corresponding author: e-mail address: gosea@mpi-magdeburg.mpg.de

Contents
1 Introduction: data-driven

modeling and control 2
2 The Loewner framework for

data-driven modeling: an overview 4
2.1 Generalities on the Loewner

framework and model structures 4
2.2 The Loewner framework in the

LTI case 6
2.3 Generalizations to parametric

linear systems 9
2.4 Generalization to modeling

from time-domain data 12
2.5 Extensions to nonlinear systems 16

3 Model reduction examples
(large-scale systems) 20
3.1 Gust load oriented generic

business jet aircraft model 20

3.2 Ground vibration tests on
business jet aircraft 22

3.3 Hydroelectricity
open-channel benchmark 23

4 Control in the Loewner framework 25
4.1 Data-driven control, virtual

reference model and L-DDC
rationale 25

4.2 Pulsed fluidic actuator control 26
4.3 Transport phenomena

benchmark 27
4.3.1 A model-driven

approximation and
control 28

4.3.2 Data-driven control 28
5 Summary and conclusions 29
References 30

Handbook of Numerical Analysis, ISSN 1570-8659, https://doi.org/10.1016/bs.hna.2021.12.015
Copyright © 2022 Elsevier B.V. All rights reserved.

1

mailto:gosea@mpi-magdeburg.mpg.de
https://doi.org/10.1016/bs.hna.2021.12.015


ARTICLE IN PRESS

2 Handbook of Numerical Analysis

Abstract
In this contribution we discuss the modeling and model reduction framework known
as the Loewner framework. This is a data-driven approach, applicable to large-scale sys-
tems, which was originally developed for applications to linear time-invariant systems. In
recent years, this method has been extended to a number of additional more complex sce-
narios, including linear parametric or nonlinear dynamical systems. We will provide here
an overview of the latter two, together with time-domain extensions. Additionally, the ap-
plication of the Loewner framework is illustrated by a collection of practical test cases.
Firstly, for data-driven complexity reduction of the underlying model, and secondly, for
dealing with control applications of complex systems (in particular, with feedback con-
troller design).
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1 Introduction: data-driven modeling and control

The physical complexity of dynamical systems describing time-dependent pro-
cesses stems from underlying non-linearities, the coupling dynamics, or the
large amount of degrees of freedom (variables or parameters). The latter aspect
is also related to enforcing specific accuracy requirements, that yield models of
large dimension which are hence challenging to use for control purposes or for
numerical simulations.

Simulating such complex dynamical systems is currently a common feature
of many numerical software toolboxes, and is widely used both in industry and
in academia. As numerical simulations become more involved, processing of
increased amounts of data is required. Consequently, the number of variables
under analysis is limited to the physical ones (even in the era of machine learn-
ing), while the rest are discarded. Computing simplified, easy to use dynamical
models is one purpose of the model approximation and reduction discipline.
Such models may then be used in a many query optimization and simulation
process. That is why it is of critical importance to construct reliable surrogate
models. Model reduction typically refers to a class of methodologies used for
reducing the computational complexity of large-scale models of dynamical sys-
tems. The goal generally is to approximate the original system with a smaller
and simpler system with the same structure and similar response characteristics
as the original. For an overview of model reduction methods, we refer the reader
to Antoulas (2005); Benner et al. (2015, 2017); Antoulas et al. (2020a), and to
the references therein. In many practical scenarios, a complete mathematical
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description of the dynamical system under study is not always available or not
fully known. Instead of depending only on physical laws (describing partial or
ordinary differential equations), one can infer important properties of the system
directly from measured or computed data.

With the increasing emergence of data-driven applications in many fields
of the applied sciences, the need for incorporating measurements in the mod-
eling and controlling stage has steadily grown over the last decades. The main
challenge consists in using the available data in order to effectively construct
surrogate models or controllers. In this latter case, the controller has to be de-
signed based on experimental measurements, instead of a model description.
Model-based methods can hence be replaced by data-driven strategies that con-
struct the controller, directly from experimental data. Such techniques are also
known as direct methods and can be useful when control-oriented models are
either too complex or too costly to obtain.

The Loewner Framework (LF) is a data-driven model identification and re-
duction technique that was originally introduced in Mayo and Antoulas (2007).
It is based on the Loewner-matrix interpolation method elaborated by the third
author of the current paper, more than 20 years earlier, in the seminal con-
tribution (Antoulas and Anderson, 1986). Using only measured data, the LF
constructs surrogate models directly and with low computational effort. For re-
cent tutorial papers on LF applied to linear dynamical systems, we refer the
reader to Antoulas et al. (2017); Karachalios et al. (2020a). Extensions that
use time-domain data were provided in Ionita and Antoulas (2012); Antoulas
et al. (2018) (for a Hankel matrix approach) as well as in Peherstorfer et al.
(2017) (for inferring transfer function measurements from time series). The
Loewner framework has been recently extended to certain classes of nonlinear
systems, such as bilinear systems in Antoulas et al. (2016a), and quadratic-
bilinear systems in Gosea and Antoulas (2015, 2018). An adaptive extension of
the original Loewner-based method in Antoulas and Anderson (1986), named
the AAA (Adaptive-Antoulas-Anderson) algorithm, was recently proposed in
Nakatsukasa et al. (2018); it is a data-driven rational approximation method that
combines interpolation and least-squares (LS) fitting.

In the first part of this contribution, the Loewner framework is mainly used
as a model identification and reduction tool. In the second part, the same frame-
work is used for feedback controller design. In the proposed setup, the reference
controller is not computed by means of a given model, but using input-output
data of the system. Consequently, the Loewner framework is used for synthesiz-
ing a controller directly from measured data, which shows that it is also a data-
driven control tool. Data-driven control strategies consist in recasting the control
design problem as an identification one. By doing so, the model simplifica-
tion process is shifted directly to the controller design step. The Loewner-based
data-driven control methodology was extensively studied in recent years, start-
ing with the original contribution (Kergus et al., 2017) and subsequently with
Vuillemin et al. (2020); Gosea et al. (2021b); Poussot-Vassal et al. (2021a,b).
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The main philosophy of the Loewner framework is as follows: starting
with frequency response measurements (or, alternatively, with time-domain se-
quences of measured inputs and outputs), the data are arranged in a specific
matrix format. Then, the dominant characteristics of the model are extracted by
means of an appropriate projection (by means of SVD’s). Thus, simplified / re-
duced surrogate models can be computed without access to system’s description.
Such models typically need to preserve some of the original system’s properties,
such as stability or passivity. In what follows we will also cover practical issues
such as stability preservation/enforcement, as presented in Gosea and Antoulas
(2016).

We denote by R (resp. C) the set of real (resp. complex) numbers, C+ (C−)
the open right (left) half plane and the complex variable by ı = √−1. Let
�(A,E) = {z ∈ C|det(zE − A) = 0} denote the set of singularities of the pen-
cil (A,E) and, more generally, let �H denote the set of isolated singularities of
the complex function H.

The paper is organized as follows: after the introduction on data-driven mod-
eling and control in Section 1, we continue with an overview on the Loewner
framework for data-driven modeling in Section 2 with various subsections that
cover specific extensions of the framework. Section 3 contains three model re-
duction examples in the Loewner framework, while Section 4 deals with the
Loewner data-driven control rationale. This illustrates how the Loewner tool can
be effective for both model-based or data-driven control approaches. Finally, 5
contains the concluding remarks together with a short summary of the paper.

2 The Loewner framework for data-driven modeling: an
overview

2.1 Generalities on the Loewner framework and model structures

The Loewner framework is a data-driven method aimed at building a time invari-
ant differential algebraic equation model / realization, with associated transfer
function HI or H(J ) (defined later). This model interpolates data obtained from
experimental measurements or the evaluation of a (collection of) transfer func-
tion(s). As made clearer later in this section, according to the mathematical
structure and nature of the underlying system, HI has some specific properties.

Although in this section we mainly focus on the Loewner framework as a
system identification tool, i.e., by achieving (rational) interpolation properties,
the main application of the method is indeed for model reduction purposes
(when frequency response data are available). This will be illustrated in the
third part of the manuscript, i.e., in Section 3, with several examples of apply-
ing model order reduction. The model approximation and reduction provided in
the Loewner framework is granted by means of numerical compression of the
interpolation data (using a singular value decomposition). In this way, the com-
pressed model attains similar interpolation properties as the uncompressed raw
data model, but at the same time, it is of reduced order. Choosing a truncation
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value is often dictated by the application, and it is typically done as a compro-
mise between enforcing high approximation quality at the cost of increasing the
dimension of the compressed data models.

In its original form presented in Mayo and Antoulas (2007), H(N) (J = {N})
is a descriptor linear time invariant (LTI) dynamical model with transfer func-
tion H(N) : C\�(A,E) → C

p×m, where N ∈ N denotes the number of collected
data. We also denote with Hn the transfer function with McMillan degree n

(I = {n}). A complete description of this case is available in the recent sur-
veys (Antoulas et al., 2017; Karachalios et al., 2020a). Extension to paramet-
ric LTI (pLTI) model structure also exists (Ionita and Antoulas, 2014). In
this case, one obtains a multi-valued rational and polynomial transfer function
H(N,M) : (C×R)\�H(N,M) → C

p×m where J = {N,M} data are used (or Hr,q ,
where I = {r, q}), where M ∈ N is the number of data along the parameter
variable (and q ∈ N is the rational and polynomial order along the parameter).
The resulting function both interpolates the complex and real parametric vari-
ables. From a different perspective, extensions to nonlinear model structures
have also been investigated. Among them, one can mention the bilinear and/or
quadratic forms, explored in a series of papers (Gosea and Antoulas, 2015; An-
toulas et al., 2016a; Gosea and Antoulas, 2018; Antoulas et al., 2019; Gosea et
al., 2021a; Antoulas et al., 2020b). In these cases, the associated transfer func-
tion is a collection of multivariate coupled infinite cascade of linear systems
reading as H(N1) : C\�H(N1) → C

p×m, H(N1,N2) : (C × C)\�H(N1,N2) → C
p×m

and H(N1,N2,... ) : (C×C× . . . )\�H(N1,N2,... ) → C
p×m (J = {N1,N2, . . . }). The

Loewner interpolation framework seeks a function interpolating the N1,N2, . . .

data along each related multi-valued transfer functions H(N1), H(N1,N2,... )

(N1,N2, · · · ∈ N). Similarly, we denote with Hr1,r2,... the associated transfer
function of order r1, r2, · · · ∈ N.

In all the cases mentioned here, the transfer function (or the set of transfer
functions) is rational and polynomial, and it interpolates the data. In comparison
to realization-driven model reduction, data-driven methods based on interpola-
tion construct models that match the original transfer function(s) at well chosen
points in the complex plane (also denoted as support points for barycentric
representations (Berrut and Trefethen, 2006; Nakatsukasa et al., 2018)). As
such, it provides a generalization of the Padé method to an arbitrary (set of)
point(s). Data-driven methods based on rational and polynomial interpolation
benefit also from the fact that it only requires the transfer function evaluation,
whereas projection methods require the internal model (system matrices or op-
erators). The latter are thus referred to as intrusive methods, while the former
are non-intrusive or data-driven ones. In this section, a review of the Loewner
framework is provided, together with some of its extensions. More specifically,
Section 2.2 presents the Loewner framework in its original form, leading to a
linear time invariant model. Extensions to linear parametric and to bilinear sys-
tems are sequentially illustrated in Sections 2.3 and 2.5. As a direct extension,
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the time-domain Loewner, dealing with sampled time-domain data instead of
frequency domain data, is covered in Section 2.4.

2.2 The Loewner framework in the LTI case

The main ingredient of the Loewner framework is summarized next in the multi-
input multi-output (MIMO) LTI case (Antoulas, 2005, chap. 4). Let us consider
this system to be a m inputs p outputs dynamical one described by a n-th
order differential algebraic equation (DAE) model S : (E,A,B,C,0)1 which
explicitly reads as Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), where E,A ∈ Rn×n,
B ∈ R

n×m, C ∈R
p×n. Its associated transfer function H :C\�(A,E) → C

p×m is

H(ξ) = C�(ξ)B where �(ξ) = (ξE − A)−1 ∈C
n×n. (1)

Importantly, as any rational and polynomial function, relation (1) can be char-
acterized in its Lagrangian basis with distinct Lagrange nodes (or support
points) λi ∈ C\�(A,E). Then one can rewrite it in its barycentric formula form
as follows (for αi �= 0), H(ξ) = ∑n+1

i=1 βiqi (ξ)/
∑n+1

i=1 αiqi (ξ) where qi (ξ) =
1/(ξ − λi). Let this system generate right (column) data together with left (row)
data, as

(λi, ri ,wi ) for i = 1, . . . , n and (μj , lTj ,vT
j ) for j = 1, . . . , n, (2)

where wi = H(λi)ri and vT
j = lTj H(μj ), with ri ∈ C

m×1, lj ∈ C
p×1, wi ∈

Cp×1, and vj ∈Cm×1 (m,p ≥ 1). In addition, we define the set of distinct inter-
polation points {zk}Nk=1 ⊂ C, leading to responses {�k}Nk=1 ∈ C

p×m, rearranged
as follows (N = n + n),

{zk}Nk=1 = {λi}ni=1 ∪ {μj }nj=1 and {�k}Nk=1 = {�i}ni=1 ∪ {�j }nj=1. (3)

The method then consists in building the Loewner matrix L ∈ C
n×n and shifted

Loewner matrix M ∈C
n×n defined as follows, for i = 1, . . . , n and j = 1, . . . , n:

L(j,i) = vT
j ri − lTj wi

μj − λi

= lTj
(
H(μj ) − H(λi)

)
ri

μj − λi

,

M(j,i) = μj vT
j ri − λi lTj wi

μj − λi

= lTj
(
μj H(μj ) − λiH(λi)

)
ri

μj − λi

.

(4)

Additionally, let W = [w1, · · · ,wn] and V = [v1, · · · ,vn]T . Finally, let � =
diag (λ1, · · · , λn), M = diag

(
μ1, · · · ,μn

)
, R = [r1, · · · , rn], and L =

1 Fixing the last component to zero is not restrictive: see e.g. Karachalios et al. (2020a) where the
direct feed-through term is equivalently incorporated in the E matrix.
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[l1, · · · , ln]. The following Sylvester equations (Antoulas, 2005, chap. 6) are
hence satisfied by the Loewner L and shifted Loewner M matrices:

ML−L� = VR − LW and MM−M� = MVR − LW�. (5)

Then, the descriptor realization S(N) is given as,2

E(N)ẋ(t) = A(N)x(t) + B(N)u(t) , y(t) = C(N)x(t), (6)

where E(N) = −L ∈ C
n×n, A(N) = −M ∈ C

n×n, B(N) = V ∈ C
n×m, and

C(N) = W ∈ Cp×n and which associated transfer function H(N) : C\�(L,M) →
C

p×m (A+ denotes the Moore–Penrose pseudo-inverse of A)

H(N)(ξ) = C(N)�(N)(ξ)B(N) where �(N)(ξ) = (ξE(N) − A(N))+ ∈ C
n×n (7)

tangentially interpolates H at the given support points and directions defined in
(2), i.e. satisfies the conditions

H(N)(λi)ri = H(λi)ri and lTj H(N)(μj ) = lTj H(μj ). (8)

Note that H(N) is an interpolant of the data without any reduction. It refers to
the realization constructed using the N available data.

From now on, let us assume that n = n, also referred to as the square
case.3 Moreover, assuming that the number N = n + n of available data is large
enough, then it was shown in Mayo and Antoulas (2007) that a minimal model
Hr of dimension r < n = n still satisfying the interpolatory conditions (8) can
be computed by projecting the realization (6), provided that the following holds
(for k = 1, . . . ,N)4

rank(zkL−M) = rank([L,M]) = rank([LH ,MH ]H ) = r, (9)

where zk are as in (3). Let Y ∈ C
n×r (resp. X ∈ C

n×r ) be the matrix containing
the first r left (resp. right) singular vectors of [L,M] (resp. [LH ,MH ]H ). Then,
Sr : (Er ,Ar ,Br ,Cr ,0) where

Er = YH E(N)X , Ar = YH A(N)X , Br = YH B(N) and Cr = C(N)X, (10)

is a descriptor realization of Hr , given as Hr (ξ) = Cr�r (ξ)Br where �r (ξ) =
(ξEr − Ar )

−1 ∈ C
r×r encoding a minimal McMillan degree equal to ν =

rank(L). Note that if r in (9) is greater than rank(L), then Hr may either have

2 The upper case letter N as superscript denotes here the number of considered data used to con-
struct the realization.
3 The term square refers to the square shape of the dynamic matrices A and E.
4 The lower case letter r as subscript denotes here the dimension of the realization instead of the
number of data measurements (denoted with the upper case letter N ).
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a direct feed-through term or a polynomial part. Finally, the number r of sin-
gular vectors composing Y and X used to project the system Hr in (10) may
be decreased at the cost of imposing an approximate interpolation of data, lead-
ing to the reduced order rational and polynomial model. This allows a trade-off
between complexity of the resulting model and accuracy of the interpolation.
The Loewner framework thus is a landmark appropriate for identification, ap-
proximationm and order reduction. Let us close this first part with two linear
differential algebraic equations examples where the Loewner framework is ap-
plied. Both continuous and sampled-time cases are considered, highlighting how
versatile this landmark is. More detailed, didactic examples are found in surveys
(Antoulas et al., 2017; Karachalios et al., 2020a).

Remark 1. Because of its data-driven nature, the Loewner framework produces
reduced-order models for which the approximation quality strongly depends on
the data used in the process. One of the main attributes of the method is that
it compresses the available information (interpolation conditions) and extracts
relevant information. Moreover, it has been recently shown in Antoulas et al.
(2017), Section 2.1.10, that the projected model indeed satisfies particular in-
terpolation properties. There, the left and right interpolation points, values, and
directions are explicitly provided for the projected Loewner model.

Remark 2. Other data-driven approaches such as the AAA algorithm (Nakat-
sukasa et al., 2018) enforce interpolation at particular data points, based on a
greedy selection scheme. In this way, an indication of where to interpolate is
provided.

Example 1 (Continuous-time rational and polynomial model interpolation).
We consider the rational and polynomial model H(s) = s + 1/(s + 1) =
(s2 + s + 1)/(s + 1) with a realization S : (E,A,B,C,0) given by: E =
[0 1 0; 0 0 1; 0 0 1], A = [1 0 0; 0 1 0; 0 0 − 1], BT = [0 0 1], and C = [1 1 1].
By sampling H along λi = {1,3,5,7} and μj = {2,4,6,8} with tangential
directions ri = lj = 1 for i, j = 1, . . . ,4 = n = n (N = 8) leads to the measure-
ments wi = {3/2,13/4,31/6,57/8} and vj = {7/3,21/5,43/7,73/9}. Con-
structing the Loewner matrices as in (4), one obtains a 4-th order realization
SN : (−L,−M,V,W). Following (9), the rank of the [L,M] matrix is equal
to r = 3. Computing the SVD of the [L,M] matrix leads to the following nor-
malized singular values σ = {1,5.59 · 10−2,6.8804 · 10−4,5.8311 · 10−17} and
thus suggests to preserve the r = 3 first columns of Y and X, as in (10). Af-
ter projection, this leads to a minimal order realization which related transfer
function exactly recovers the original H, with McMillan degree of ν = 2 and
associated realization r = 3. In addition, computing the singularities of the as-
sociated pencil (M,L) gives {−1,∞,∞}, being exactly the one of the original
model H. The singularity in −1 is related to the rational part of H, 1/(s + 1)

(finite dynamic mode). The two singularities in ∞ are related to the impulsive
(polynomial part) and non-dynamic (direct feed-through term) modes.
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Example 2 (Interpolation in the sampled-time). Let us consider the discrete-
time model H(z) = z/(z − 1/2), with sampling period h = 1 second. We
evaluate the function on the unit circle centered in zero. Then, by choosing
λi = {e−ı0.1h, eı0.1h, e−ı2h, eı2h}, μj = {e−ıh, eıh, e−ı3h, eı3h} and tangential
directions ri = lj = 1 for i, j = 1, . . . ,4 = n = n (N = 8), one obtains wi and
vj . By construction, the Loewner matrices of dimension 4 × 4 contain complex
entries. As data are provided in complex conjugate form, one may work with
real arithmetic by projecting (see §2.5.4 Karachalios et al., 2020a for details).

By then solving (5), one readily obtains L and M and the associated 4-th
order realization SN : (−L,−M,V,W,0). Applying the rank revealing factor-
ization (9) and (10), one obtains the McMillan degree ν = rank(L) = 1 and
r = 2. This suggests a constant term. By applying the procedure in Gosea et al.
(2020), the direct term is reconstructed by the infinite eigenvalue computation
of (M,L) pencil. In this case one finds D = 1. By removing it from the data and
re-computing the Loewner procedure, one finds ν = r = 1 and the sampled real-
ization (E1,A1,B1,C1,D1) = (2.897,1.448,−0.9632,−1.504,1), with trans-
fer function H1 = (z−1.665×10−16)/(z−0.5), recovering almost perfectly H.

2.3 Generalizations to parametric linear systems

The Loewner framework has been extended to parametric LTI (pLTI) sys-
tems, first in Antoulas et al. (2012) and in a more detailed manner in Ionita
and Antoulas (2014).5 In parametric model approximation and reduction, the
aim is to construct reduced-order models that match the response of the orig-
inal model / data, along the dynamical parameter ξ (usually complex) and
along parameter ρ (real-valued). In what follows we will only show how the
two variable case works, i.e. with one single parameter ρ ∈ R (for further
extensions, see Ionita and Antoulas, 2014). We construct models which are re-
duced both with respect to the complex variable (frequency) and to the real one
(parameter). In this configuration, let us consider such a m input p output ρ-
parametrized dynamical system described by a n-th order differential algebraic
equation (DAE) model denoted S(ρ) : (E(ρ),A(ρ),B(ρ),C(ρ),0) given as
E(ρ)ẋ(t) = A(ρ)x(t) + B(ρ)u(t) , y(t) = C(ρ)x(t) where E(ρ),A(ρ) ∈ R

n×n,
B(ρ) ∈ R

n×m, C(ρ) ∈ R
p×n, ρ ∈ R, with associated transfer function H :

(C×R)\�(A(ρ),E(ρ)) →C
p×m given for �(ξ, ρ) = (ξE(ρ)−A(ρ))−1 ∈C

n×n,
as:

H(ξ, ρ) = C(ρ)�(ξ, ρ)B(ρ). (11)

5 The approach developed in Ionita and Antoulas (2014) interpolates more frequencies and param-
eter combinations than the approach derived in Antoulas et al. (2012). This latter interpolates an
extended Loewner matrix instead and leads to the coefficients of a rational and polynomial function
given in the Barycentric form.
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As for the Loewner case, let us assume that function (11) can be expressed using
the distinct Lagrange support points λi and πj , as (for αij �= 0)

H(ξ, ρ) =
∑n+1

i=1
∑m+1

j βij qij (ξ, ρ)∑n+1
i=1

∑m+1
j=1 αij qij (ξ, ρ)

where qij (ξ, ρ) = 1

(ξ − λi)(ρ − πj )
.

(12)
Note that the above structure is not restrictive at all since it provides a
parametrization as a function of support points (see Nakatsukasa et al., 2018;
Berrut and Trefethen, 2006). Computation of the approximant is done in a sim-
ilar way as for the non-parametric rational case: one seeks the βij and αij of the
rational barycentric formula (12). Assuming that H(ξ, ρ) is sampled along the
dynamical parameter ξ and the parametric one ρ as

{zk}Nk=1 = {λi}ni=1 ∪ {μj }nj=1 and {pl}Ml=1 = {πi}mi=1 ∪ {νj }mj=1, (13)

leading to H(zk,pl) = �k,l . Thus the measurement matrix reads

� =
[
�(11) �(12)

�(21) �(22)

]
∈C

N×M, (14)

where �(11) = �1,...,n/1,...,m ∈ C
n×m, �(12) = �1,...,n/1,...,m ∈ C

n×m, �(21) =
�1,...,n/1,...,m ∈ C

n×m, and �(22) = �1,...,n/1,...,m ∈ C
n×m. The rows correspond

to frozen values of zk related to the dynamical (complex) ξ parameter. The
columns correspond to frozen pl values related to the (real) ρ parameter. Sim-
ilarly to the non-parametric case mentioned in Section 2.2, one may construct
the following one variable Loewner matrices: (i) L2 ∈ C

nm×nm associated to
�(11) along λi

⋃
πj , (ii) Lλi

∈C
m×m associated to the i-th row of [�(11),�(12)]

along pl and (iii) Lπj
∈ C

n×n associated to the j -th column of [�H
(11),�

H
(21)]H

along zk .
Then the global two dimensional Loewner matrix L̂2 = [LH

λ L
H
π L

H
2 ]H ∈

C
(nm+nm+nm)×(nm), where Lλ = [(eT

1 ⊗ Lλ1)
H . . . (eT

n ⊗ Lλn
)H ]H and Lπ =

[(Lπ1 ⊗ eT
1 )H . . . (Lπn

⊗ eT
m)H ]H .

As in the non-parametric case, one important step is the determination of the
minimal rational orders n and m in (12) hidden in the data collection. This is
computed by evaluating the null-space of the single variable Loewner matrices
combinations

r = max
l

rankLpl
and q = max

k
rankLzk

, (15)

where Lpl
and Lzk

are the one dimensional Loewner matrices associated to the
k-th row and l-th column of �, respectively. Then, one can simply set (n,m) =
(r + 1, q + 1), partition the data (13)-(14), and reconstruct L̂2. The two dimen-
sional Lowner matrices ensure rank L̂2 = rankL2 = nm − (n − r)(m − q) =
nm − 1. The coefficients αij and βij of the two variables barycentric transfer
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function interpolating the data, are obtained by computing the null-space of L̂2

as c = ker L̂2 where c ∈ C
(r+1)×(q+1). Note that it is usually preferred to work

with real arithmetic, e.g. for model time domain simulation or control design
and analysis. In that case zk are compiled in a closed conjugate form and sup-
port points are doubled (refer to §A.2 of Ionita and Antoulas, 2014 for detailed
exposition). Note also that a trade-off between accuracy and complexity with
both the frequency and the parameter variables can be obtained by decreasing
the order r and q below the one given by (15).

Following the barycentric formulae, and Ionita and Antoulas (2014); An-
toulas et al. (2012), one may reconstruct the associated multi-valued transfer
function Hr,q : (C×R)\�Hr,q

→C
p×m as follows (where �(ξ, ρ) ∈ C

Nr,q×Nr,q ,
Nr,q = r + 2q + 2)

Hr,q(ξ, ρ) = C�−1(ξ, ρ)B

where �(ξ, ρ) =
⎡
⎢⎣Jλ,r (ξ) 0 0

A JT
π,q(ρ) 0

B 0 [Jπ,q(ρ),τ ]

⎤
⎥⎦ , (16)

with B = [0,τ ,0]T ∈ R
Nr,q and C = [0, . . . ,0,−1] ∈ R

Nr,q . Moreover, the
following holds for k = 1, . . . , r , l = 1, . . . , q and w = vect(�(11)): A:,k =
[cH

k,1 . . . cH
k,q+1]H , B:,k = [(ck,1wk,1)

H . . . (ck,q+1wk,q+1)
H ]H and τ−1

k =∏q+1
l=1,l �=k(πk − πl) and with

Jη,t (x) =
⎡
⎢⎣

x − η1 η2 − x

...
. . .

x − η1 ηt+1 − x

⎤
⎥⎦ ∈ C

t×(t+1). (17)

Notice that (16) depends only on the extended Loewner matrix null-space c,
support points {λi}r+1

i=1 , {πj }q+1
j=1 and the response data matrix {�(11)}r+1,q+1

i,j=1 .

Remark 3 (Minimal realization in the multi-parametric case). Realization (16)
is no longer identical to the one in the single variable case as the resolvant
�(ξ, ρ) includes both the dynamic and parametric variables, leading instead to
an order Nr,q of r . Finding a minimal order realization is still an open problem.

Remark 4 (SIMO, MISO, and MIMO cases). Both SIMO and MISO cases
can be addressed by tangential interpolating the data instead of the scalar (see
§A.1 of Ionita and Antoulas, 2014 for details). Extension to the MIMO case
is not solved yet. The tangential approach used in the non-parametric case and
in most of multi-port interpolation frameworks (Gallivan et al., 2004) is not
applicable as is. An alternative approach is presented in Lefteriu et al. (2011)
but which “only” interpolates �(11), forgetting �(12) and �(21).
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Example 3 (Reynolds parameter dependent linearized Navier-Stokes model).
Let us consider a two-dimensional open square cavity fluid-flow problem where
air flows from left to right for three different Reynolds numbers Re = 4000,
5250, or 6000. Such a configuration, illustrated on Fig. 1 (top right), is de-
scribed in Barbagallo et al. (2008) and in Poussot-Vassal and Sipp (2015).
For simulation, Navier-Stokes equations are used along a mesh composed of
193,874 triangles, corresponding to n = 680,974 degrees of freedom for the
velocity variables along the x and y axis. After linearization around three fixed
points for Reynolds numbers, and discretization along the flow axis, {Hl}3

l=1
can be described as a DAE realization of order n = 680,974 where the input
u(t) is the vertical pressure actuator located upstream of the cavity and the
output y(t) is a shear stress sensor, located downstream of the cavity. A set
of continuous-time n-th order realization Sl : (E,Al ,B,C,0) are obtained. In
Poussot-Vassal and Sipp (2015), the IRKA approach (Gugercin et al., 2008) is
used to sequentially approximate each realization with a low dimensional one.
The interpolation along the parameter is done in a second step by interpolating
each coefficients in the canonical basis of the obtained reduced models. Here in-
stead, the parametric Loewner framework is applied. The frequency response of
each configuration along {zk}Nk=1 = z0

⋃{ıωk,−ıωk}100
k=1, where z0 ∈ R+ and

ωk logarithmically-spaced frequencies. Then, twenty intermediate configura-
tions between each Reynolds numbers Re = 4000,5250, 6000 are constructed
by linear interpolation. We obtain {zk}N=201

k=1 , {pl}N=41
l=1 and thus � ∈ C

201×41.
Our objective is to come up with a parametrized linear model that is able to
faithfully reproduce the original transfer function data on a particular range of
frequencies as well as on a parameter range.6

Fig. 1 (top left) depicts two types of singular values. The singular values
drop indicates reduction orders r = 30 and q = 20 for building the two dimen-
sional Loewner matrix. As a real valued rational function is preferred rather than
a complex one, the twice more support points are considered and realization size
is increased. The reduced linear parametric model is sampled over the same fre-
quency and parameter range as before. When comparing to the original samples
on Fig. 1 (bottom), the overall result is satisfactory, with a model of complexity
r = 60 (instead of n = 680,974) and q = 20 (instead of a collection).

2.4 Generalization to modeling from time-domain data

For a linear, time-invariant SISO system, let the impulse response be denoted
with: h = { · · · h−2,h−1,h0,h1,h2, · · · }. Here we restrict our attention to
causal systems: hk = 0, k < 0; furthermore it is assumed that u(t) = 0, t < 0.
Hence, one can write that

y(t) = h0u(t) + h1u(t − 1) + · · · + hku(t − k) + · · · , t ∈ Z+. (18)

6 Additional details and the data are available at https://morwiki.mpi-magdeburg.mpg.de/morwiki/
index.php/Fluid_Flow_Linearized_Open_Cavity_Model.

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Fluid_Flow_Linearized_Open_Cavity_Model
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Fluid_Flow_Linearized_Open_Cavity_Model
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FIGURE 1 Top left: singular values drop of the one variable Loewner matrices (15). Top right:
schematic view of the geometry (with illustration of the control structure used in Poussot-Vassal et
al., 2018). Bottom frames: frequency response gain and phase of the original sampled data (blue
dots) and resulting parametric model H60,20 for some parametric values (solid orange lines).

In the formulation above, hj denotes the j th Markov parameter of the underlying
system. In the time domain, the data are samples of input and output signals

uN = [u0, · · · , uN−1], yN = [y0, · · · , yN−1], (19)

where, for simplicity, we have used the shortened expressions uk := u(k) and
yk := y(k). The system identification problem consists in recovering a discrete-
time linear time invariant system compatible with the data in (19). We seek a
minimal realization (E,A,B,C,D):

SD : E x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (20)

where E,A ∈R
n×n, B,CT ∈R

n×1, D ∈ R, with the transfer function

H(z) = C(zE − A)−1B + D = bmzm + · · · + b1z + b0

zn + · · · + a1z + a0
, m ≤ n. (21)

The Markov parameters in (18) can be explicitly written in terms of matrices
from the realization in (20), as follows:

h0 = D, hk = CAk−1B, ∀k ≥ 1. (22)

Moreover, another interpretation of Markov parameters is that they encode the
behavior of the transfer function in H(z) in (21) at z = ∞. More precisely, the
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values hk’s represent the coefficients of the following Laurent series expansion
of the transfer function H(z) = h0 + h1z

−1 + h2z
−2 + · · · + hkz

−k + · · · .
In order to be able to accurately extract system invariants (poles, residues,

Markov parameters, etc.) from input-output data, there are certain conditions
that need to be imposed to sequence of control inputs applied. For example,
one of such conditions is the so-called persistence of excitation. However, as
explained in Ionita and Antoulas (2012), this requirement of the input is not
necessary when the initial conditions are zero. For any k ≥ 0, we introduce
Hankel matrices Uk ∈ R

M×L, Yk ∈ R
M×L, as follows (Uk)i,j = uk+i−1,k+j−1,

(Yk)i,j = yk+i−1,k+j−1, for all 1 ≤ i ≤ M , 1 ≤ j ≤ L. Let also Q0 = (I −
�U0)Y0 and Q1 = (I − �U0)Y1, where �U0 be the orthogonal projection onto
the column space of U0. Next, as explained in Ionita and Antoulas (2012),
there exists matrix Y, such that the matrix pencil (Q̂0, Q̂1), where Q̂0 = Y∗Q0,
Q̂1 = Y∗Q1, is regular (often Q̂0, Q̂1 can be taken as the leading n × n sub-
matrices of Q0, Q1). The following result in Ionita and Antoulas (2012) gives a
realization for a model of dimension n:

Theorem 1. For zero initial conditions, the system has a minimal realization

Ẽ = Q̂0, Ã = Q̂1, B̃ = q0, C̃ = [h1, · · · ,hn], D̃ = h0,

where q0 is the first column of Q̂0 and the Markov parameters hj ’s are obtained
by solving the following linear system of equations

⎡
⎢⎢⎢⎣

u0
u1 u0

...
. . .

. . .

un · · · u1 u0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

h0

h1

...

hn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y0
y1

...

yn

⎤
⎥⎥⎥⎦ . (23)

The Markov parameters can hence be computed for any input u. The result
in Theorem 1 can indeed be further specialized for the case of u = [1,0, · · · ,0].
Hence, when the input is an impulse, the output is a finite sequence of Markov
parameters, i.e., y = [h0,h1, · · · ,hN−1]. The realization in Theorem 1 is hence
appropriately modified; let S̃n be the new realization given by

Ẽ =

⎡
⎢⎢⎢⎢⎣

h1 h2 · · · hn

h2 h3 · · · hn+1

...
...

. . .
...

hn hn+1 · · · h2n−1

⎤
⎥⎥⎥⎥⎦ , Ã =

⎡
⎢⎢⎢⎢⎣

h2 h3 · · · hn+1

h3 h4 · · · hn+2

...
...

. . .
...

hn+1 hn+2 · · · h2n

⎤
⎥⎥⎥⎥⎦ ,

C̃ = [
h1, h2, · · · , hn

]
, B̃ = C̃T , D̃ = h0.

(24)

As in Section 2.2, we could further reduce the dimension of the fitted model in
(24) by means of projection (compressing the realization of order n to one of



ARTICLE IN PRESS

Data-driven modeling and control in the Loewner framework 15

order r by means of orthogonal matrices computed using the SVD Antoulas,
2005, chap. 3). In this case, we enforce approximation, i.e. by fitting a model
which approximately explains the data. Hence, let Y ∈ Rn×r (resp. X ∈ Rn×r )
be the matrix containing the first r left and respectively, right singular vectors
of the Hankel matrix denoted in (24) by Ẽ. The reduced-order realization S̃r :
(Ẽr , Ãr , B̃r , C̃r ,0) is computed:

Ẽr = YT ẼX , Ãr = YT ÃX , B̃r = YT B̃ , C̃r = C̃X, and D̃r = h0. (25)

Example 4 (A structural mechanics model). As a numerical test case, we
consider the model of a building (the Los Angeles University Hospital) from
the NICONET benchmark examples collection (Niconet, 2002). The original
model is a second-order linear system of dimension n0 = 24. It can be writ-
ten equivalently as a first-order linear system of dimension n = 48. We modify
the original model by scaling the vector B ∈ R

48 with 104. Then, the orig-
inal continuous-time LTI model of dimension n = 48 is discretized using a
classical Backward Euler first order scheme. The simulation time horizon is
[0,5]s, while the time step is 
t = 4 · 10−3. The control input is chosen to be
u(t) = 1

10

(
cos(50t) + 2 cos(20t) + 3 cos(10t)

)
. Hence, by means of this time-

domain simulation, we collect N = 2001 measurements of the discretized input
and output, i.e., as in (19). These values are depicted in the left pane of Fig. 2.
The Markov parameters are extracted by following the approach in Ionita and
Antoulas (2012), and are depicted in the right pane of Fig. 2 (there, the magni-
tude of the error between the true Markov parameters and the estimated ones is
shown in orange).

FIGURE 2 Samples of the input and output signals (left) and the true and recovered Markov pa-
rameters (right).

Next, form a 1000 × 1000 Hankel matrix as in (24). The decay of its sin-
gular values is displayed in the left pane of Fig. 3. Then, choose the truncation
order r = 20, and construct a realization of order r as presented in (25). Finally,
convert this discrete-time model back to the continuous time, and compare the
frequency response of the original model of order n, with that of the reduced
one of order r (on a range of 500 frequency points in the interval [100,102]).
The results (frequency responses and the approximation error) are presented in
the right pane of Fig. 3. Indeed, the model is well approximated by means of the
proposed method.
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FIGURE 3 Decay of the Hankel singular values (left) and frequency responses computations: orig-
inal, reduced and the approximation error (right).

Remark 5. As shown in this experiment, the estimated Markov parameters il-
lustrated in Fig. 2 match the original ones quite well (up to O(10−14) errors).
This accurate matching is explained by the fact that the input and output were
assumed to be measured without noise. However, in practical applications such
measurements could be indeed perturbed by various exogenous sources. An ex-
act quantification of how the noise affects the Markov parameter estimation will
be studied in future works specifically for the method presented here (a generic
analysis is readily available in Ljung, 1987, Chapter 8).

2.5 Extensions to nonlinear systems

Consider a nonlinear system described by the following equations SN

ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = Cx(t), (26)

where t � 0, x(0) = x0 and the nonlinear functions f,g :Rn → R
n are assumed

to be analytic in x(t). Here, we will focus on an extension of the Loewner
framework to reducing bilinear systems. The motivation for this is that any
smooth, nonlinear system with analytical nonlinearities can be approximated
by a bilinear system. This is accomplished by means of Carleman linearization
(Carleman, 1932; Rugh, 1981). Since this is based on Taylor expansion and
truncation, the resulting bilinear system will approximate the original nonlinear
system depending on the number of terms kept in the expansion. We proceed by
writing the truncated Taylor series for the non-linear functions f and g, i.e.⎧⎨

⎩f(x) ≈ ∑N
k=0 Fkx(N) = F0 + F1x + F2x(2) + . . . + FN x(N),

g(x) ≈ ∑N−1
k=0 Gkx(k) = G0 + G1x + . . . + GN−1x(N−1),

(27)

where F0,G0 ∈ R
n×1, Fj ,Gj ∈ R

nj ×nj
, j � 1 and N is the truncation index.

Here, the term F0 is usually chosen to be 0 in the case of non-existing forcing
terms (if indeed is non-zero, it can be incorporated in the state vector by means
of shifting). Additionally, F1, G1 denote the Jacobian matrices of f and g, re-
spectively, and Fk , Gk denote the matrices of higher derivatives. Moreover x(k)
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denotes the Kronecker product of the state variable x with itself (k times). Then,
introduce a new state variable

x⊗(t) =
[
x(t) x(2)(t) . . . x(N)(t)

]T ∈ R
n(N)

,

where n(N) = n + n2 + ... + nN = nN−n
n−1 . This is obtained by concatenating all

higher powers of vector x (up to N ). In this way, by computing derivatives of
x(k), we obtain a bilinear system with the following realization

ẋ⊗(t) ≈ A⊗x⊗(t) + N⊗x⊗(t)u(t) + B⊗u(t), y = C⊗x⊗(t), (28)

where x⊗(0) = 0 and the matrices A⊗,N⊗ ∈ R
n(N)×n(N)

, B⊗,
(
C⊗)T ∈ R

n(N)
are

as in (Gosea, 2017, Section 2.1.1). In what follows, we employ a more generic
definition of bilinear systems SB : (C,E,A,N,B), characterized by:

Eẋ(t) = Ax(t) + Nx(t)u(t) + Bu(t), y(t) = Cx(t), (29)

where E, A, N ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and x ∈ R

n, u, y ∈ R. The ma-
trix E is assumed to be non-singular. Also, for simplicity of exposition, we will
discuss only the SISO case. More details on bilinear system model order re-
duction can be found in Breiten and Damm (2010); Benner and Breiten (2012);
Flagg and Gugercin (2015). Bilinear systems as in (29) are equivalent to an
infinite collection of coupled linear time-varying systems:

Eẋ1(t) = Ax1(t) + Bu(t), Eẋi (t) = Axi (t) + Nxi−1(t)u(t), i ≥ 2. (30)

The time-varying factor appears only in the matrices that scale the control in-
put u(t) at each level i ≥ 2. Based on (30), the solution of (29) is decomposed
as x(t) = ∑∞

i=1 xi (t). Furthermore, the input-output representation of the bilin-
ear system SB can be expressed in terms of the Volterra series representation
(Rugh, 1981; Flagg and Gugercin, 2015). Moreover, considering xi−1(t) in the
ith equation as a pseudo-input for i = 1,2, . . ., the frequency-domain behavior
is described by a series of generalized transfer functions as given also in Rugh
(1981); Flagg and Gugercin (2015); Antoulas et al. (2016a):

Hi (s1, s2, . . . , si) = C�(s1)N�(s2)N · · · N�(si)B, (31)

where the resolvent of the pencil (A,E) is denoted by �(ξ) = (ξE − A)−1.
The characterization of bilinear systems by means of the rational functions in
(31) suggests that reduction of such systems can be performed by means of the
Loewner framework. In what follows, we will review some highlights of the
procedure originally presented in Antoulas et al. (2016a). We use the concept of
multi-tuples, composed of multiple interpolation points corresponding to eval-
uations of the transfer functions in (31). For simplicity, we will assume that
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one set of right multi-tuples λ, and one set of left multi-tuples μ with the same
number of interpolation points (denoted with k), are given as

λ = {{λ1}, {λ2, λ1}, . . . , {λk, . . . , λ2, λ1}} ,

μ = {{μ1}, {μ1,μ2}, . . . , {μ1,μ2, . . . ,μk}} .
(32)

For the tuples in (32), we introduce the associated generalized controllability
and observability matrices, denoted with R ∈ C

n×k , and respectively with O ∈
C

k×n, as in Antoulas et al. (2016a), (Antoulas, 2005, chap. 4).
Given the above notations, we introduce the following matrices, i.e., the gen-

eralized Loewner matrix L, and the generalized shifted Loewner matrix M

L = −OER ∈C
k×k, M = −OAR ∈C

k×k. (33)

In addition, we define matrices T = ONR ∈ C
k×k , V = OB ∈ C

k , and W =
CR ∈ C

1×k . Note that L and M as defined above are indeed Loewner matri-
ces, that is, they can be expressed as divided differences of appropriate transfer
function values of the underlying bilinear system; the following equalities hold:

L(j, i) =
Hj+i−1(μ1, . . . ,μj , λi−1, . . . , λ1) − Hj+i−1(μ1, . . . ,μj−1, λi, . . . , λ1)

μj − λi

M(j, i) =
μj Hj+i−1(μ1, . . . ,μj , λi−1, . . . , λ1) − λiHj+i−1(μ1, . . . ,μj−1, λi, . . . , λ1)

μj − λi

,

while V(j,1) = Hj (μ1, . . . ,μj−1,μj ), W(1, i) = Hi (λi, λi−1, . . . , λ1), and
T(j, i) = Hj+i (μ1, . . . ,μj−1,μj , λi, λi−1, . . . , λ1). This result shows that all
quantities of the bilinear Loewner surrogate model can be indeed computed us-
ing only data, and the realization is written concisely as

Ê = −L, Â = −M, N̂ = T, B̂ = V, Ĉ = W. (34)

It was shown in Antoulas et al. (2016a), that the bilinear model of dimension
k in (34) matches a total of 2k + k2 transfer function values of the original
bilinear system of dimension n. If necessary, the model given is (34) is further
reduced similarly to the classical linear case, e.g., as in (10). This is done by
projecting with special matrices using the singular value decay of the Loewner
pencil involved. This provides a useful indicator for choosing the truncation
order (Antoulas et al., 2016a).

Example 5 (Viscous (bi)linearized Burgers’ equation model). We consider a
discretized model of the viscous Burgers’ equation (previously presented also
in Antoulas et al. (2016a)). The original partial differential equation is given by

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x
= ∂

∂x

(
ν
v(x, t)

∂x

)
, (x, t) ∈ (0,1) × (0, T ) , (35)
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with initial and boundary conditions v(x,0) = f (x), x ∈ [0,1], v(0, t) = u(t),
v(1, t) = 0, t � 0. The viscosity coefficient ν(x, t) = ν is assumed to be con-
stant and we consider zero initial conditions. Finally, we assume that the left
boundary is subject to a control.

Start with a spatial discretization of Eq. (35), using an equidistant step size
h = 1

n+1 where n denotes the number of interior points of the interval (0,1).
By using first-order derivative approximations schemes, a nonlinear model is
obtained (with quadratic-bilinear nonlinearities). Next, use the Carleman bi-
linearization technique to approximate this nth order nonlinear system with a
bilinear system of order N = n2 + n.

Denote with SB the 4970th order initial bilinear system obtained by means
of the Carleman bilinearization. The first step is to collect samples from general-
ized bilinear transfer functions up to order two; the 400 interpolations points are
chosen logarithmically spaced in the interval [10−3,103]ı. Next, we construct
the bilinear Loewner matrices as presented in this section, and display the sin-
gular value decay in the left pane of Fig. 4. We construct a reduced-order model
of order r = 32; the poles are depicted in the right pane of Fig. 4.

FIGURE 4 The first 100 sv’s of the Loewner matrices (left) and the poles of the ROM (right).

Finally, perform time-domain simulation for a control input given by u(t) =
1
5 (cos(2πt) + sin(20πt)e−t/5), on time span [0,10]s. The observed outputs for
both the original and of the reduced-order bilinear systems are displayed in the
left pane of Fig. 5, while the error is depicted in the right pane of Fig. 5.

FIGURE 5 The observed outputs (left) and the approximation error in the time domain (right).
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3 Model reduction examples (large-scale systems)

In this section, we illustrate how Loewner-based rational approximation and
reduction features have been successfully applied to real-life industrial prob-
lems. First, two benchmarks sequentially involving a generic business jet aircraft
model and measurements data obtained by Dassault-Aviation, a French aircraft
supplier, are considered (Meyer et al., 2017; Poussot-Vassal et al., 2021c). Sec-
ond, a benchmark involving a simplified open channel model constructed by
Electricité De France, the French electricity supplier is involved (Dalmas et al.,
2016). A gust oriented model described by a non-rational transfer function is
considered (Section 3.1), ground vibration experimental data (Section 3.2), and
a linear partial differential equation (Section 3.3).

3.1 Gust load oriented generic business jet aircraft model

The gust load envelope monitoring, is an important element to guarantee in air-
craft structural integrity. One important certificate is to preserve and limit the
worst case loads along the wings in response to vertical gust episodes. To this
aim, we consider vertical gust disturbances w, modeled through the so-called “1-
cosine” profiles. The gust load envelope is the worst case load responses along
the wing span in reaction to the set of many differently chosen time-domain
vertical wind gust profiles affecting the aircraft structure. In the preliminary con-
ception step, the aircraft is designed so that the wings support a given nominal
load envelope, dictated by physical and industrial considerations. The larger the
supported loads are, the larger the structural stiffeners and mass reinforcements
should be, increasing its consumption during flight. Gust load alleviation (GLA)
control is aimed at lowering the loads envelope. To achieve this GLA function,
as illustrated in Fig. 6, model-based control design approaches are usually pre-
ferred. Following Poussot-Vassal et al. (2021c), we illustrate through a generic
business jet aircraft model constructed by Dassault-Aviation, how the Loewner
framework is a pivotal tool used in the industry to simplify the complexity of
these dynamical models, prior control design and analysis.

FIGURE 6 Closed-loop architecture of the GLA problem.
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At each flight and mass configuration, a linear dynamical model is con-
structed. Generic aircraft models have the following continuous-time realiza-
tion S

Eẋ(t) = A0x(t) + A1x(t − τ1) + A2x(t − τ2) + Buu(t) + Bww(t) ,

y(t) = C0x(t) + C1x(t − τm)
(36)

where E,A0,A1,A2 ∈ R
n×n, Bu ∈ R

n×nu , Bw ∈ R
n×nw , C0,C1 ∈ R

p×n and
x(t) ∈R

n, u(t) ∈R
nu , w(t) ∈R

nw (m = nu +nw) and y(t) ∈R
p are the internal

variables, control input, exogenous gust input and output signals, respectively.
In the considered case, nu = 3, nw = 1 (m = 4), p = 5, and n ≈ 500. The pres-
ence of internal delays is caused by the physical restitution of the gust impact
over the fuselage at three different locations function of the aircraft velocity.
Moreover, due to the model construction method (see e.g. Quero et al. (2021)
or Poussot-Vassal et al. (2021c)), the E matrix may also be rank deficient. Here,
due to the additional double derivative and delay structure added to accurately
describe the gust disturbance effect along the fuselage, rank E = n− 6. Follow-
ing (36), the gust load model transfer associated function H, from [uT ,wT ]T to
y thus reads, H(s) = (

C0 +C1e
−τms

)(
sE−A0 −A1e

τ1s −A2e
τ2s

)−1B ∈Cp×m.
We seek a simplified rational and polynomial model description to be used in
place of H(s) for fast simulation, control design and (modal) analysis. The first
step in the process consists in gridding the interpolation (support points) along
the imaginary axis and collecting the associated response (with n = n = n =
500, 2n = N , and ωi �= ωj ): {zk}Nk=1 = {ıωi,−ıωi}n/2

i=1 ∪ {ıωj ,−ıωj }n/2
j=1 and

{�k}Nk=1 = {�i,−�i}n/2
i=1 ∪ {�j ,−�j }nj=1, where ωi,ωj ∈ R+ are the frequen-

cies at which one evaluates each transfer H. In our application, the ωi , ωj ’s are
logarithmically spaced.

Remark 6 (About a Padé approximation). One option is to replace the delays
with a Padé approximation. This preserves the gain but modifies the phase.
While this is classically used in many applications, it is, to the authors expe-
rience, not the most accurate way to deal with internal and external delays.
Indeed, Padé often results in significant error in the phase, which can be in-
appropriate for flexible structures. In addition, Padé will drastically increase the
model internal dimension which in turn is not appropriate for model reduction.
The accuracy / complexity ratio is not in favor of Padé (see also Fig. 7).

Fig. 7 illustrates the transfer function from the gust disturbance to a wing
bending moment output, used to monitor the gust envelope. It compares the
responses of the original irrational model H with its rational approximate model
Hn constructed with Loewner matrices and its rational approximation obtained
with Padé HPadé.

Fig. 7 emphasizes the good performance of the rational model obtained af-
ter reducing the complexity of the model. The phase is much well captured
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FIGURE 7 Left: frequency response gain. Right: frequency phase response. Comparison of the
original model with the rational approximation obtained by Loewner and Padé.

by the Loewner approach than with Padé, while using less internal variables.
In Poussot-Vassal et al. (2021c), this rational model is then used for GLA con-
troller synthesis, leading to a load envelope reduction which is achievable thanks
to the Loewner framework.

3.2 Ground vibration tests on business jet aircraft

We continue on the business aircraft benchmark provided by Dassault-Aviation,
moving to the vibration problem, related to fatigue and comfort issues. Anti-
vibration controllers are designed using model, targeting undesirable ampli-
fications of the aerodynamical effects on the fuselage around some specified
frequencies (Poussot-Vassal et al., 2013). After control design, Ground Vibra-
tion Tests (GVT) are performed to both validate the control performances and
the original model. The benchmark considered here illustrates the generic busi-
ness jet GVT, performed on a Falcon 7X at Istres, France, in 2015 (Meyer et
al., 2017).

Dassault-Aviation engineers implemented the control law on the real busi-
ness jet aircraft. Then, using shakers applied at some aircraft locations, the
structure was excited, thus simulating aerodynamic disturbances. Hundreds of
sensors were positioned on the aircraft and used for analysis.7

Fig. 8 (left) shows the singular frequency response of the (open-loop) data
collected between a single-input and 100-outputs, compared with the frequency
response of a rational models (with different complexity). The singular values
drop is also illustrated on Fig. 8 (right).

In this industrial case, the Loewner framework is shown to be able to ac-
curately recover the transfer function from raw data. It allows engineers to
re-adjust the theoretical models with experiments, to detect some new phenom-
ena and re-tune the control laws. This step contributes to the quest for a so-called
digital twin.8

7 https://drive.google.com/file/d/1H2GqlYkiny_PZND2ekB6swSetoGcmFTK/view video illus-
trates the kinematic effect of the control law acting on the tail surface to reduce the vibrations.
8 Additional information may be found in Meyer et al. (2017) or in §2.4.7 of Poussot-Vassal (2019).

https://drive.google.com/file/d/1H2GqlYkiny_PZND2ekB6swSetoGcmFTK/view
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FIGURE 8 Left: singular value frequency response of the data (doted blue), minimal McMillan
degree model (solid orange) and 30-th order model (dashed black). Right: Loewner singular values.

3.3 Hydroelectricity open-channel benchmark

Let consider a model representing the level h of an open-channel as a function
of the inflow qi and outflow qo inputs. Such a model is used by hydro-electricity
engineers from Electricité De France to monitor the level of a river in order
to control the available energy. In France, in May 2021, the hydraulic energy
represented about 10% of the total produced energy. These models in such
benchmarks belong to the class of linear partial differential equations (PDE),
coming from two nonlinear hyperbolic Saint-Venant equations, given as:

∂S

∂t
+ ∂Q

∂x
= 0 and

∂Q

∂t
+ ∂(Q2/S)

∂x
+ gS

∂H

∂x
= gS(I − J ), (37)

where x ∈ [0,L] is the spatial variable, t the time variable, H(x, t) the water
depth, S(x, t) the wetted area, Q(x, t) the discharge, g the gravity acceleration
and J the Manning-Strickler friction.9 Under mild assumptions a linearization
around an equilibrium point (Q0,H0), detailed in Dalmas et al. (2016), ex-
presses the variation relations (q,h), between inflow (qe, being q at x = 0),
outflow (qs , being q at x = L) and the water depth (h, at a given measurement
point x) as follows, h(x, s) = Ge(x, s)qe(s) − Gs(x, s)qs(s), where

Gi (x, s) = λ1(s)e
λ2(s)L+λ1(s)x − λ2(s)e

λ1(s)L+λ2(s)x

B0s(eλ1(s)L − eλ2(s)L)
and

Go(x, s) = λ1(s)e
λ1(s)x − λ2(s)e

λ2(s)x

B0s(eλ1(s)L − eλ2(s)L)
.

(38)

For a frozen measurement point x = xm, one has hxm(s) = H(s)u(s) =
Gi (xm, s)qi(s) + Go(xm, s)qo(s), where u(s) contains the qi(s) and qo(s) and
where H is now a one output two inputs complex-valued transfer function.
Fig. 9 illustrates the approximation features and accurate reconstruction of the

9 Numerical values of this model are provided at https://morwiki.mpi-magdeburg.mpg.de/morwiki/
index.php/Hydro-Electric_Open_Channel.

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Hydro-Electric_Open_Channel
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Hydro-Electric_Open_Channel
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open-channel phenomenon. To obtain this result, we consider complex conju-
gated points {zk}Nk=1 = {ıωk,−ıωk}N/2

k=1 (where n = n = 300 = N/2) sampled
between 10−4 and 101.5 in logarithmic space. Then, the responses H(s) and
H̃(s) = H(s)s/(s + 10−2)(s + 10−3), are computed. Dealing with H remains
standard with the framework presented so far. By approximating H̃ removes
the integral action and enforces roll-off in high frequency, and thus allows to
deal with limited energy functions. In this latter case, the resulting interpolated
model should be post processed as H̃n ← Hn(s + 10−2)(s + 10−3)/s to recover
the original one.

FIGURE 9 Top: frequency response comparison between the original irrational model and two
approximated Loewner models. Bottom left: Singular values drop of the Loewner pencil for the two
models. Bottom right: eigenvalues of the resulting minimal order rational approximation.

Both approaches lead to a perfect matching of the irrational transfer. Inter-
estingly, working with H̃ instead of H leads to a model with all singularities on
the left hand side plus the 0 one. Working with the shifted function H̃ illustrates
how one can perform gray box identification by simply shifting the original
data. Here, the integral action (physically known from open-channel models) is
removed and added afterward.
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4 Control in the Loewner framework

Let us now deviate from the original purpose of the Loewner framework, ini-
tially introduced to provide solutions to the identification, approximation and
reduction problems through the lens of rational and polynomial function con-
struction. Here instead, Loewner is used for feedback controller design. More
specifically it is used as in some traditional loop shaping methods, to fit a refer-
ence controller. In the proposed setup, the reference controller is not computed
by means of a model but in terms of input-output data. Two applications are
illustrated. The first one involves experimental data and considers the design of
a reference tracking controller applied on a pulsed fluidic actuator (PFA), see
Section 4.2, (Poussot-Vassal et al., 2021a). The second considers a numerical
benchmark representing the boundary control a wave equation, described by an
infinite dimensional equation.

4.1 Data-driven control, virtual reference model and L-DDC
rationale

In this section, the Loewner framework is used for synthesizing a controller
directly from measured data, being then a data-driven control (DDC) frame-
work.10 DDC consists in recasting the control design problem as an identifica-
tion one. The technique under consideration belongs to the so-called reference
model approaches and more specifically relies on the definition of a so-called
ideal controller, derived from a reference model. This framework is deployed in
the frequency-domain, with the use of the Loewner framework as the identifi-
cation tool in Kergus et al. (2017); Vuillemin et al. (2020), allowing to skip the
controller complexity selection thanks to its rank properties (see Section 2). The
Loewner data-driven control (L-DDC) is thus a combination of determining the
ideal controller from frequency-domain data via a reference model and the use
of the Loewner framework (Mayo and Antoulas, 2007) to construct a reduced
order controller. Such an interpolatory-based data-driven control design solves
problems faced by practitioners: (i) the controller design is directly obtained
using open-loop raw data collected on the experimental setup, (ii) without any
prior controller structure or order specification.

The L-DDC procedure boils down to two steps: first deriving the ideal
controller definition and second the controller identification via interpolation
in the Loewner framework. We recall the mains steps in the SISO case. Fol-
lowing Fig. 10, the objective is to find a controller with transfer function
K : C\�K → C that minimizes the difference between the resulting closed-
loop and a given user-defined reference model M : C\�M → C. This is made
possible through the definition of the ideal controller K�, being the LTI con-
troller that would have given the desired reference model behavior if inserted

10 The reader may notice that DDC methods have a long history dating to the proportional, integral,
derivative (PID) tuning method by Ziegler-Nichols in early 40’s or the self tuning regulator by
Åström in the 90’s (see e.g. Ziegler and Nichols, 1942 for more details and references).
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in the closed-loop. The latter is defined as K� = H−1M(I − M)−1. In the data-
driven case, this definition may be recast as a discrete set of equations (where
{zk}Nk=1 ∈C, k = 1, . . . ,N)

K�(zk) = H(zk)
−1M(zk)(I − M(zk))

−1, (39)

where H(zk) is the evaluation of the considered model, if available. In an ex-
perimental context, one usually considers sampling H at zk = ıωk (ωk ∈ R+).
Finding a controller K that fits K�(zk) can be considered to be an identification
problem. In the Loewner framework, the control design boils down to finding a
transfer function K satisfying condition (39).

FIGURE 10 Data-driven control problem formulation.

4.2 Pulsed fluidic actuator control

The design of active closed-loop flow controllers constitutes an important field
of research in fluid mechanics (Sipp and Schmid, 2016). In most contributions,
both the sensor(s) and the actuator(s) are supposed to be lumped and ideal. To
move towards experimental applications and real-life validations, it is essential
to consider realistic set-ups and is the core contribution of Poussot-Vassal et al.
(2021a), where the L-DDC is applied on a PFA. PFA are on/off actuators that
blow air to modify the pressure in a flow setup. The control setup considered is
schematized on Fig. 11.

FIGURE 11 PFA control setup (details are in Poussot-Vassal et al., 2021a).

After exciting the PFA using a pseudo random binary sequence u(tk/n), out-
put data y(tk/n) are collected. The corresponding frequency responses u and
y are computed and transfer function values H(ıωk) are thus obtained. Apply-
ing (39) with zk = ıωk and the Loewner approach, it leads to a singular value
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decay indicating that a first or third order model is sufficient to recover the main
dynamics (see Fig. 12). One important result is the ability of the L-DDC to
construct, directly from raw open-loop data, a control law performing well on
an experimental setup. Relevant in this context is that the L-DDC structure and
complexity is almost automatically chosen by the Loewner framework, and no
pole pre-assignment is required.

FIGURE 12 Top left: gain of the frequency responses of the ideal controller K� (blue dots) and
of the estimated controller K̃r(s) of order r = 1 (solid orange) and r = 3 (dotted black). Top right:
closed-loop response estimation using controller K1 and K3 of the averaged output y(tk) (solid
orange and dotted black). Bottom: time-domain closed-loop response to a reference trajectory r(tk)

(dashed black), averaged control signal u(tk) (dotted blue) and averaged output (solid orange).

4.3 Transport phenomena benchmark

Let us consider the case of a one dimensional transport equation controlled at its
left boundary through a second order actuator. This model is used in Poussot-
Vassal et al. (2021b) and detailed in §2, Example 7 of Poussot-Vassal (2019).
This phenomenon is represented by a linear PDE with constant coefficients in-
terconnected with a second order linear ODE actuator, as described in (40).

∂ỹ(x, t)

∂x
+ 2x

∂ỹ(x, t)

∂t
= 0 , ỹ(x,0) = 0 and ỹ(0, t) = 1√

t
ũf (0, t) (40)

where ω2
0/(s

2 + mω0s + ω2
0)u(0, s) = uf (0, s) and x ∈ [0 L] (L = 3) is the

spatial variable. Then, ω0 = 3 and m = 0.5 are the input actuator parameters.
The scalar model input is the vertical force applied at the left boundary, i.e. at
x = 0. We denote the input ũ(0, t) in the time-domain or u(0, s) in the complex
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one. Similarly, the output at location x is given as ỹ(x, t) for the time-domain
and y(x, s) in the complex one. By applying the Laplace transform, one obtains
the transfer function from the input u(0, s) to the output y(x, s):

y(x, s) =
√

π√
s

e−x2s ω2
0

s2 + mω0s + ω2
0

u(0, s) = G(x, s)u(0, s). (41)

Let us now consider that one single sensor is available and is located at
xm = 1.9592 along the x-axis.11 The transfer from u(0, s), denoted by u(s)

to y(xm, s), denoted by y(s) then reads y(s) = y(xm, s) = G(s, xm)u(0, s) =
H(s)u(s), where H(s) is now a SISO complex-valued irrational transfer func-
tion.

4.3.1 A model-driven approximation and control
By Loewner interpolation, the transfer function H can be approximated by a
rational function Hr (r = 33). Then, standard feedback synthesis methods can
be applied. In this example, the HINFSTRUCT function has been used (Apkarian
and Noll, 2006). Details may be found in Poussot-Vassal et al. (2021b). Here
the model-based H∞-norm minimization oriented control design allows to con-
struct a filtered proportional integral (PI) of the form K(s) = (kp + ki

1
s
) 1
s/a+1 ,

where kp, ki, a ∈R.

4.3.2 Data-driven control
Let us now apply the L-DDC rationale, instead of a model-based control de-
sign. The reference model choice is a key factor for the L-DDC success, as
for any other model reference control procedure. Indeed, the latter should not
only represent a desirable closed-loop behavior, but also achievable dynamics
of the considered system (i.e. the ideal controller should not internally desta-
bilize the plant). A reference model is said to be achievable by the plant if the
corresponding ideal controller internally stabilizes the plant. Here let us skip
this point and focus on the equivalence of model vs. data-based design. Let the
reference model M be the closed-loop rational function obtained by the previous
approach interconnecting Hr with the obtained filtered PI control law obtained
in the above section.

By computing the ideal controller through (39), we again compute the
Loewner pencil, leading to a minimal realization with n = 42. Obviously, such
a control order is prohibitive for classical control applications. The singular
values decay indicates that an order r = 2 is enough to catch the main dy-
namics of the underlying controller. One obtains transfer function K2(s) =
(1082.7(s + 0.1313))/(s(s + 5656)), being close to the values obtained by the

11 In the rest of the chapter, x will be discretized with 50 points from 0 to L = 3, and xm has been
chosen to be located at x(�50 × 2/3�).
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model-based approach.12 The controller and resulting close-loop frequency re-
sponse gains are shown in Fig. 13.

FIGURE 13 Left: frequency response of the controller (ideal, model-based and data-driven). Right:
open-loop vs. closed-loop frequency responses.

Interestingly, with reference to Fig. 13, Kr perfectly recovers the model-
based requested performances of M with a controller of rational order two
(indeed, we expected to observe this result since we knew from the model-based
approach presented in Section 4.3.1 that a rational control of this order leading
to this performance is achievable).

This example demonstrates how the Loewner framework can be effectively
used, either for model-based, or for data-driven control. Interestingly, by choos-
ing the closed-loop performances M obtained with the model-based approach,
the controller Kr exactly recovers the original properties, while skipping the
model construction step and the order selection. This property reduces the model
construction step and allows a quick design of the controller. However, this main
advantage is balanced by the fact that in the model-based approach, the stability
assessment is usually carried out using the approximate model, here Hr . The lat-
ter being very accurate, the eigenvalues computation is traditionally enough for
concluding stability. On the contrary, in the second data-driven approach, stabil-
ity cannot be analyzed as easily. Still, Poussot-Vassal et al. (2021b) suggests an
approach based on the combination of Loewner with optimal H∞ projections.

Finally, we mention that all numerical experiments reported in this manu-
script were performed on a laptop computer with the following specifications:
16 GB RAM and an Intel(R) Core(TM) i7-10510U CPU running at 1.80 GHz
2.30 GHz, while the software platform used was MATLAB® R2019a.

5 Summary and conclusions

In this work, we have provided an inventory of selected extensions and ap-
plications of the Loewner framework. The main philosophy of this approach
is as follows: use the available data to construct a model or a controller; if
needed, apply compression techniques to reduce the complexity of the model

12 The model based approach yield to 1084.9(s + 0.1313)/s(s + 5667).
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or of the controller. The Loewner framework was shown to be applicable for re-
ducing large-scale dynamical systems from computational fluid dynamics (such
as the linearized Navier-Stokes model with more than half a million degrees
of freedom), to data-driven modeling in aeronautics applications, and to vari-
ous benchmarks described by complicated dynamics (characterized by irrational
transfer functions, having multiple delays, with many input or output ports, with
nonlinear terms etc.). The key observation here is that one can accomplish all of
these successful endeavors by having access only to compressed data (transfer
function measurements, Markov parameters, etc.). Moreover, the Loewner data-
driven control approach was shown to faithfully recover the performance at-
tained by other classical model-based control approaches. Thus, one advantage
is the data-driven characteristic, and another is the robustness of the approach.
The Loewner framework is hence a valid alternative to intrusive methodologies,
and can be successfully used when data are available.
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