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Abstract. The paper's main contribution concerns the use of interpolatory methods to solve end-to-end in-
dustrial control problems involving complex linear dynamical systems. In more detail, contributions
show how rational function interpolation is a pivotal tool (i) to construct (frequency-limited) reduced-
order dynamical models appropriate for model-based control design and (ii) to accurately discretize
controllers in view of onboard computer-limited implementation. These contributions are illustrated
along the paper through the design of an active feedback gust load alleviation function, applied on
an industrial generic business jet aircraft use case. The closed-loop validation and performance eval-
uation are assessed through the use of a dedicated industrial simulator and considering certification
objectives. Although application is centered on aircraft applications, the method is not restrictive
and can be applied to any linear dynamical system.
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1. Introduction.

1.1. General aircraft context. Aircraft mobility plays an important role in our lifestyle
and societal organization. As this transportation means is facing severe environmental and
societal challenges (e.g., global warming and CO2 emissions), it is the role of researchers
to provide innovative answers and industry-oriented tools to address them. These solutions
should fulfill the safety and design requirements and be numerically efficient and simple to
implement within the aircraft industrial design value chain. Among other scientific disciplines,
it is well admitted that the civil aircraft industry relies on dynamical systems theory, linear
algebra, and computational sciences to address these issues. In light of these statements, recent
developments in these scientific communities may have a major impact on the overall aircraft
conception and exploitation enhancement. Within the aeroelastic field, one may mention
efforts in modeling and gust load alleviation (GLA) [29, 28], vibration reduction [23], and
flutter detection [30, 24]. In other aircraft fields, one should also mention [2, 41], given the
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strong connection with this work. Authors believe that related computational methods and
tools can lead to important improvements in the civil aviation footprint reduction. This is one
of the main objectives of this work.

In order to reach these objectives, the paper highlights the pivotal role and relevance of
interpolatory methods [4, 5] in the context of linear time invariant (LTI) large-scale systems
[31].

1.2. Generic business jet aircraft context and industrial constraints. Through a com-
plete industrial GLA control design and validation problem applied to a generic business jet
aircraft, we show how rational function interpolation is a central ingredient for engineers.
It is used (i) to construct a reduced-order dynamical models appropriate for feedback con-
trol function design and (ii) to accurately discretize a linear dynamical controller in view
of constrained onboard computer implementation. The complete closed-loop stability and
performance analysis is done through a dedicated industrial simulator to assess the approach.

In an industrial value chain, the GLA function, which targets load reduction along wings in
response to gust disturbances, is designed after the flight controller (focusing on handling qual-
ities). Consequently, one additional requirement of GLA control is to keep nominal (low fre-
quencies) flight performances unchanged and focus on the gust phenomena and load envelope
only. In addition, as the control functions should be implemented in a limited sampled-time
computer, with a constrained material architecture (sensor and actuator limitations, sampling
limitations, delays in the loop, etc.), the discretization step should also be accurately taken
into account before any implementation and performance evaluation.

1.3. Paper organization and principal contributions. Given the above considerations and
objectives, the rest of the paper is focused on the central role of the interpolation applied to the
GLA control problem and on the new development of an interpolatory-driven discretization
method. Reminders on the interpolation framework are first given in section 2. The gust
load--oriented aircraft (medium-scale) irrational modeling is detailed in section 3. Its rational
and reduced approximation, leading to models suitable for linear control design, is illustrated
in section 4. Then, after briefly describing the continuous-time GLA controller synthesis, the
controller discretization through the interpolation framework is detailed in section 5. Finally,
conclusions are given in section 6, first to illustrate the efficiency of the proposed process
to alleviate gust loads in an industrial application context and then to discuss the obtained
results.

The global contribution of this article lies in the use of interpolatory methods in the devel-
opment of an end-to-end solution to solve an industrial aeronautical problem (sections 3--5).
This result is made possible thanks to two methodological contributions: the exact modeling
of the gust impact over an aeroelastic aircraft model (section 3) followed by an appropri-
ate approximation (section 4) and the interpolatory-based discretization scheme (section 5).
Although the paper is centered around the aircraft gust load function, the overall approach
is also valid to (m)any linear time invariant dynamical systems. Moreover, the presented
interpolatory-based discretization method of section 5 may be applied to any linear time
invariant continuous-time model.
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1.4. Notations. Let us denote by \BbbR the set of real numbers, \BbbC the set of complex numbers,
\BbbC + (\BbbC  - ) the open right (left) half-plane, \scrD the open unit disk, \partial \scrD its boundary, and \scrD the
complementary of the closed unit disk, respectively. The complex variable is given by \imath =

\surd 
 - 1.

Let \scrL 2(\scrI ) (\scrI = \imath \BbbR or \partial \scrD ) be the set of functions that are square integrable on \scrI . Let \scrH 2(\scrD )
(resp., \scrH 2(\scrD )) be the subset of \scrL 2(\partial \scrD ) containing the functions analytic in \scrD (resp., \scrD ). Let
\scrH 2(\BbbC +), shortly \scrH 2 (resp., \scrH 2(\BbbC  - )), be the subset of \scrL 2(\imath \BbbR ) containing the functions analytic
in \BbbC + (resp., \BbbC  - ). Similarly, let \scrL \infty (\scrI ) (\scrI = \imath \BbbR or \partial \scrD ) be the set of functions that are bounded
on \scrI . Let \scrH \infty (\scrD ) (resp., \scrH \infty (\scrD )) be the subset of \scrL \infty (\partial \scrD ) containing the functions analytic
in \scrD (resp., \scrD ) and \scrH \infty (\BbbC +), shortly \scrH \infty , the subset of \scrL \infty (\imath \BbbR ) of functions analytic in \BbbC +.
The Fourier transform of a time-domain signal v \in \scrL 2(\BbbR ) is denoted by v = \scrF (v).

2. Preliminaries in rational interpolation and approximation. The entire proposal relies
on a specific use of the model interpolation tools, namely, the Loewner and the optimal
(frequency-limited) \scrH 2 frameworks. In this section, the Loewner framework is recalled in
its general form in subsection 2.1. Then \scrH 2 model order dimension reduction methods are
recalled in subsections 2.2--2.4.

2.1. Reminder of the Loewner framework. The main elements of the Loewner framework
are recalled in the multi-input multi-output (MIMO) general square case. For a complete
description, readers may refer to [5, 22] and to [3] for insight in the rectangular case. Under
mild considerations, the Loewner approach is a data-driven method aimed at building a ra-
tional descriptor LTI dynamical model Hm of dimension m which interpolates given complex
data, here generated by an underlying ``unknown"" model H. Let us be given the left or row
data and the right or column data,

(2.1)
(\mu j , l

H
j ,vH

j )

for j = 1, . . . ,m

\biggr\} 
and

\biggl\{ 
(\lambda i, ri,wi)

for i = 1, . . . ,m,

where vH
j = lHj H(\mu j) and wi = H(\lambda i)ri, with lj \in \BbbC ny\times 1, ri \in \BbbC nu\times 1, vj \in \BbbC nu\times 1, and

wi \in \BbbC ny\times 1. The wi and vj are the complex measurement data at the points \mu j \in \BbbC and
\lambda i \in \BbbC , along the tangential directions lj and ri. We denote \{ zk\} 2mk=1 = \{ \mu j\} mj=1 \cup \{ \lambda i\} mi=1

as the interpolation (or support) points. The method then consists in building the Loewner
\BbbL \in \BbbC m\times m and shifted Loewner \BbbL \sigma \in \BbbC m\times m matrices defined as follows for i, j = 1, . . . ,m:

(2.2) [\BbbL ]j,i =
vH
j ri  - lHj wi

\mu j  - \lambda i
and [\BbbL \sigma ]j,i =

\mu jv
H
j ri  - \lambda il

H
j wi

\mu j  - \lambda i
.

Then the model Hm given by the following descriptor realization \scrS m:

(2.3) Em\delta \{ x(\cdot )\} = Amx(\cdot ) +Bmu(\cdot ) and y(\cdot ) = Cmx(\cdot ),

where Em =  - \BbbL , Am =  - \BbbL \sigma , [B
m]k = vH

k and [Cm]k = wk (for k = 1, . . . ,m) and whose
related transfer function Hm(\xi ) = Cm (\xi Em  - Am) - 1Bm interpolates H at the given driving
frequencies and directions defined in (2.1), i.e., satisfies

(2.4) lHj Hm(\mu j) = lHj H(\mu j) and Hm(\lambda i)ri = H(\lambda i)ri.
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Remark 2.1 (about \delta \{ \cdot \} and \xi notations). In (2.3), ``(\cdot )"" denotes the considered time-
domain variable; this latter can either be ``(t)"" for continuous-time models (t \in \BbbR +) or ``[q]""
for sampled-time models (q \in \BbbZ ). Similarly, in (2.3), ``\delta \{ \cdot \} "" stands as the shift operator being
either \delta \{ x(t)\} = \.x(t) in the continuous-time case and \delta \{ x(q)\} = x[q+1] in the sampled-time
one. Moreover, \xi stands as the associated complex version being the Laplace variable \xi = s
in the continuous-time case and the forward shift \xi = z in the sampled-time one.

Assuming that the number 2m of available data is large enough, it has been shown in [22]
that a minimal model Hn of dimension n < m that still interpolates the data can be built
with a projection of (2.3) provided that, for k = 1, . . . , 2m,

(2.5) rank (zk\BbbL  - \BbbL \sigma ) = rank ([\BbbL ,\BbbL \sigma ]) = rank
\bigl( 
[\BbbL H ,\BbbL \sigma 

H ]H
\bigr) 
= n.

Then let us denote Y \in \BbbC m\times n the matrix containing the first n left singular vectors of [\BbbL ,\BbbL \sigma ]
and X \in \BbbC m\times n the matrix containing the first n right singular vectors of [\BbbL H ,\BbbL \sigma 

H ]H . Then

(2.6) En = Y HEmX, An = Y HAmX, Bn = Y HBm, Cn = CmX

is a realization of the model Hn given as Hn(\xi ) = Cn (\xi En  - An) - 1Bn, embedding a minimal
McMillan degree equal to rank (\BbbL ). The quadruple \scrS n : (En, An, Bn, Cn) is a descriptor
realization of Hn. Note that if n in (2.5) is greater than rank(\BbbL ), then Hn can either have a
direct-feedthrough or a polynomial part. The reader may note that the number n of singular
vectors composing Y and X used to project the system Hn in (2.6) may be decreased even
further at the cost of approximate interpolation of the data. This allows for a trade-off between
complexity of the resulting model and accuracy of the interpolation. In this work, we will
always consider exact interpolation, while the model reduction step, recalled in subsection 2.2,
will be performed by (frequency-limited) \scrH 2-oriented interpolatory methods instead. These
latter are discussed in subsections 2.3 and 2.4.

Remark 2.2 (assumptions for model order reduction). In what follows, we assume stable,
strictly proper with semisimple poles Hn. These assumptions can be theoretically removed
but at the cost of a more complicated developments not appropriate in our gust load setting.

2.2. Model dimension reduction. Given the finite nth-order functionHn equipped with a
realization defined by the quadruple \scrS n : (En, An, Bn, Cn) given in (2.6), the model reduction
goal consists in constructing reduced rth-order (r \ll n) model \^\scrS ,

(2.7) \^E\delta \{ \^x(\cdot )\} = \^A\^x(\cdot ) + \^Bu(\cdot ) and \^y(\cdot ) = \^C\^x(\cdot ),

where \^x(\cdot ) \in \BbbR r are the reduced internal variables and \^y(\cdot ) \in \BbbR ny is the approximated output
and where \^E \in \BbbR r\times r, \^A \in \BbbR r\times r, \^B \in \BbbR r\times nu , and \^C \in \BbbR ny\times r are constant matrices such that
the input-output behavior of \^H defined as \^H(\xi ) = \^C(\xi \^E  - \^A) - 1 \^B is similar to Hn; i.e., for
the same input u, the mismatch y  - \^y is small in some sense.

2.3. Rational \bfscrH \bftwo approximation and reduction by interpolation. One way to find \^H (or
\^\scrS ) as in (2.7) is to solve the so-called \scrH 2 model reduction problem:1

(2.8) \^H = arg min
\bfG \in \scrH 2

| | Hn  - G| | \scrH 2 .

1Optimizing through the \scrH 2-norm is relevant, as it provides an upper bound on the worst-case time-domain
error in response to an input signal [16].
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The most common approach to obtain the solution of (2.8) is to work with the first-order
necessary optimality conditions which were developed in a series of papers; see, e.g., [9, 33] for
theoretical insight (see also [8] for existence and properties). The interpolation-based approach
revisited by a sequence of contributions [13, 34, 16] resulting in an interpolatory problem is
used here. In the case of semisimple poles only (see [35] for higher order poles), if \^H, equipped
with a realization \^\scrS : ( \^E, \^A, \^B, \^C), is a solution of the \scrH 2 approximation problem (2.8), then

(2.9) Hn(\^\kappa l)\^bl = \^H(\^\kappa l)\^bl, \^cHl Hn(\^\kappa l) = \^cHl \^H(\^\kappa l) and \^cHi
dHn

d\xi 

\bigm| \bigm| \bigm| \bigm| 
\xi =\^\kappa l

\^bl = \^cHl
d\^H

d\xi 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\xi =\^\kappa l

\^bl,

where [\^b1, . . . , \^br]
H = R \^B and [\^c1, . . . , \^cr] = \^CL and where L \in \BbbC r\times r and R \in \BbbC r\times r are the

left and right eigenvectors associated to \^\lambda l, the eigenvalues of the ( \^E, \^A) pair. Then, in the
continuous-time case, \^\kappa l =  - \^\lambda l, while in the discrete-time one, \^\kappa l = 1/\^\lambda l (l = 1, . . . , r) [16, 10].

In [16], authors derive a Petrov--Galerkin type of projection-based approach [36], accompa-
nied with a fixed point algorithm, celebrated as theMIMO iterative rational Krylov algorithm
(MIMO IRKA), allowing reaching the optimality conditions (2.9). The solution results in a
procedure with a fairly cheap computational cost, embedding linear equation resolutions for
which efficient methods are available [32, 20, 17]. Details are skipped here, but readers can
also refer to the book [4] or monograph [27, Chap. 2] for practical and numerical details.

2.4. Rational frequency-limited \bfscrH \bftwo approximation and reduction by interpolation.
Similarly to the above \scrH 2 model approximation problem, it might be interesting to approx-
imate over a frequency-limited range \Omega = [0, \omega ] (\omega \in \BbbR +) only. This is the purpose of the
frequency-limited \scrH 2, shortly \scrH 2,\Omega , approximation problem defined as [40, 25]

(2.10) \^H = arg min
\bfG \in \scrH \infty 

| | Hn  - G| | \scrH 2,\Omega 
.

Interestingly, as in the seminal works of [16] treating the \scrH 2 objective, [37, Chap. 8] has
shown that this problem can also be recast as an interpolatory one.

However, unlike the \scrH 2 interpolation conditions, the frequency-limited ones do not in-
volve directly the transfer functions H and \^H but irrational functions Tn

\omega (H) and \^T\omega (\^H),
parametrized by H and \^H. Here again, these functions should match at images of the poles
of the reduced-order model (see details in [37, Chap. 8]). These interpolatory conditions are
difficult to practically exploit. Indeed, no Krylov-like subspace has been clearly identified yet.
Consequently, aMIMO IRKA type pf procedure as in [16] is not straightforward to develop.2

So far, this \scrH 2,\Omega problem has been attacked using the DARPO procedure [37, Chap. 8], a
descent algorithm, and the FL-ISTIA procedure [39], involving frequency-limited gramian,
taking advantage of a subset of the interpolation conditions (2.9). In the remainder of the
paper, we will consider the FL-ISTIA procedure developed in [39].

3. Gust load--oriented modeling. Now that the rational approximation tools have been
introduced, let us present the GLA problem as well as the first contribution: the exact gust

2Note that in [26], a similar procedure achieving first-order \scrH 2 optimality with interpolatory conditions
with an input-output delayed \bfL \bfT \bfI model has been developed.
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load aeroelastic model definition. Figure 1 illustrates the considered feedback control loop
architecture, where the sampled GLA function denoted as GLA controller is to be computed
and validated. One may note that the actuators, sensors, flight controller (a priori fixed),
and computational delay for the GLA function are considered as given and included in the
considered generic business jet (BizJet) aircraft model set, referred to as \{ Gi\} ns

i=1, and detailed
hereafter.

Actuators Sensors
Computational

delay \tau m
y

z

u

wG

Flight
controller

Sampled GLA
controller

h

Generic BizJet aircraft \{ Gi\} ns
i=1

Figure 1. Closed-loop architecture of the GLA problem. The complete aeroservoelastic dynamical aircraft
models \{ \bfG i\} ns

i=1 include the ``flight controller,"" ``actuators,"" ``sensors,"" and ``computational delay \tau m."" The
``GLA controller"" is the GLA function to be computed. Signals \bfw , \bfu , \bfz , and \bfy denote the exogenous inputs,
control inputs, performance outputs, and measurements, respectively. Then h denotes the sampling time for the
GLA.

The GLA problem is stated in subsection 3.1. In subsection 3.2, the large-scale aeroservoe-
lastic models \{ Gi\} ns

i=1, as provided by physics and load teams, is described. Its input-output
simplification is then done in subsection 3.3, leading to the set of irrational models \{ Hi\} ns

i=1.

3.1. GLA feedback control objective. An important aircraft design criteria concerns the
gust load envelope that should not reach some limit to ensure structure integrity. To this aim,
it is standard to consider vertical gusts wg, modeled through the so-called 1-cosine profile

(3.1) wg(t) =

\left\{     
W

2

\biggl( 
1 - cos

\biggl( 
\pi V

L
t

\biggr) \biggr) 
for 0 \leq t \leq 2L

V
,

0 for t >
2L

V
,

where W is the gust velocity (in feet), L is the gust wavelength (in meters), and V is the
aircraft true airspeed (in meters per second).3 The gust load envelope is simply the worst-case
load response along the wingspan in reaction to the set of time-domain vertical wind gust
profiles (3.1) affecting the aircraft. Similarly to aerodynamical effects inducing vibrations

3Typical values for these parameters are provided by authorities and result in hundreds of different gust
configurations.
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[23], these gusts represent typical phenomena the aircraft might face during its exploitation.
Prior to any flight test, aircraft manufacturers should guarantee authorities that they are
controlled. In the preliminary conception step (before considering any control functions),
the aircraft is designed by experts so that the wings support a given nominal load envelope,
dictated by physical considerations such as desired aircraft maneuverability, gust, and many
other manufacturing constraints. The larger the supported loads are, the larger the structural
stiffeners and mass reinforcements should be. The aircraft mass is consequently bigger and its
consumption during flight increased. In this context, GLA control function plays an important
role in the aircraft conception: It is aimed at lowering the load envelope and thus at reducing
the aircraft's overall mass, consumption, and emissions [1]. In this work, the gain brought by
the GLA on the worst upward gain is denoted by \scrE (xi) and is computed as

(3.2) \scrE (xi) = max
\bfw g\in \scrW 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| z\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{s}(xi) - z
(\mathrm{G}\mathrm{L}\mathrm{A})
\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{s} (xi)

z\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{s}(xi)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

,

where xi is the wing location points where the loads are computed (here five locations xi =
[x1, x2, x3, x4, x5]) and where \scrW is the set of gust profiles as in (3.1). Then z\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{s}(xi) denotes

the load at location xi for the baseline aircraft, and z
(GLA)
\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{s} (xi) denotes the one when the GLA

control function is activated. Responses are obtained when the aircraft model is fed by (3.1).
This model is detailed in the what follows.

3.2. Aeroservoelastic aircraft modeling. To guarantee the safety and performance lev-
els, the GLA function is developed using a very accurate environment and models, issued
from aeroservoelastic modeling teams [28, 29]. Indeed, to target important load alleviation
levels and important mass reduction, all the aircraft dynamics should be considered from the
beginning of the study. From the authors' experience, this is mandatory to prevent unex-
pected behavior resulting from any prior simplification. The dynamical models involved are
then obtained from high-fidelity aeroelastic and flow software. More specifically, the hereafter
considered model set aggregates different blocks constructed by different teams, software, and
experts. A finite element approach is used to obtain a model of the aircraft structure in the
form of a finite-dimensional second-order model dynamic. It is then completed by the fluid,
atmosphere, and actuator effects on the structure through a set of linear, polynomial, and
rational functions, internal to the industrial process. The resulting model, detailed in what
follows, is provided as a first-order DAE with multiple inputs and outputs (see also [29] and
[18] for details).

Following Figure 1, \{ Gi\} ns
i=1 denotes the family of gust load--oriented dynamical models.

Each Gi (i = 1, . . . , ns) represents a linear time invariant dynamical model of the aircraft,
evaluated at a given flight and mass condition. Its construction is a know-how of the aircraft
manufacturer and usually results from multiple steps performed by different experts from
fluid mechanics, structural, and test teams. Each transfer function \{ Gi\} ns

i=1 is described by
the following realization denoted \{ \scrG i\} ns

i=1:

(3.3) \.x(i)(t) = A(i)x(i)(t) +B(i)

\biggl[ 
wG(t)
u(t)

\biggr] 
and

\biggl[ 
y(t)
z(t)

\biggr] 
= C(i)x(i)(t) + C

(i)
d x(i)(t - \tau m),

where x(i)(t) \in \BbbR Mi , u(t) \in \BbbR nu , wG(t) \in \BbbR nwG , y(t) \in \BbbR ny , and z(t) \in \BbbR nz are the internal
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variables, input, exogenous input, output, and performance output signals, respectively. The
dimensions nu, nwG, ny, and nz are constant for all ns models, while Mi depends on the model
configuration. Finally, \tau m \in \BbbR + represents the delay for the GLA control law computation.

In the considered use case, u gathers three control inputs: the horizontal tail and the
inner and outer ailerons (nu = 3). Exogenous input wG gathers \delta  \star mc, the aircraft horizontal
tail deflection given by the pilot, the gust disturbance, and its first and second derivatives,
applied at three different locations of the aircraft fuselage (nwG = 10). This vector reads

(3.4)

wG(t) =

\biggl[ 
\delta  \star mc(t),wg(t), \.wg(t), \"wg(t)\underbrace{}  \underbrace{}  

\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{t} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{a}\mathrm{i}\mathrm{r}\mathrm{c}\mathrm{r}\mathrm{a}\mathrm{f}\mathrm{t}

,wg(t - \tau 
(i)
1 ), \.wg(t - \tau 

(i)
1 ), \"wg(t - \tau 

(i)
1 )\underbrace{}  \underbrace{}  

\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{d}\mathrm{l}\mathrm{e} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{a}\mathrm{i}\mathrm{r}\mathrm{c}\mathrm{r}\mathrm{a}\mathrm{f}\mathrm{t}

, . . .

wg(t - \tau 
(i)
2 ), \.wg(t - \tau 

(i)
2 ), \"wg(t - \tau 

(i)
2 )\underbrace{}  \underbrace{}  

\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{a}\mathrm{i}\mathrm{r}\mathrm{c}\mathrm{r}\mathrm{a}\mathrm{f}\mathrm{t}

\biggr] T
,

where the same gust (position, velocity, and acceleration) enters in the model at the front, the

middle, and the rear, with a delay \tau 
(i)
1 \in \BbbR + and \tau 

(i)
2 \in \BbbR +, depending on the aircraft velocity.

The only considered measurement y is the aircraft angle of attack at the nose level (ny = 1).
Finally, the performance z gathers outputs being the tracking signal error between the load
factor without (n \star 

z) and with (nz) GLA controller n \star 
z  - nz and the load envelope z\mathrm{l}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{s}(xi)

(nz = 6). The A(i), B(i), C(i), and C
(i)
d matrices are real and of appropriate dimensions.

3.3. Toward gust load control--oriented models. As signals in (3.4) are repeated and
linked together, it may be problematic to deal with in a control design setup. One solution
is to merge them in order to deal with w(t) = [\delta  \star mc(t),wg(t)]

T instead of (3.4). This can be
obtained by applying the following transformation:

(3.5)

\left[                  

\delta  \star mc(t)
wg(t)
\.wg(t)
\"wg(t)

wg(t - \tau 
(i)
1 )

\.wg(t - \tau 
(i)
1 )

\"wg(t - \tau 
(i)
1 )

wg(t - \tau 
(i)
2 )

\.wg(t - \tau 
(i)
2 )

\"wg(t - \tau 
(i)
2 )

\right]                  
=

\left[                   

1 0
0 1
0 s
0 s2

0 e - \tau 
(i)
1 s

0 se - \tau 
(i)
1 s

0 s2e - \tau 
(i)
1 s

0 e - \tau 
(i)
2 s

0 se - \tau 
(i)
2 s

0 s2e - \tau 
(i)
2 s

\right]                   

\biggl[ 
\delta  \star mc(t)
wg(t)

\biggr] 
,

where s denotes the Laplace variable. By merging (3.3) and (3.5), one can now reconstruct
each model in a realization form \{ \scrS i\} ns

i=1 as

(3.6)

\left\{       
E(i) \.x(i)(t) = A

(i)
0 x(i)(t) +A

(i)
1 x(i)(t - \tau 

(i)
1 ) +A

(i)
2 x(i)(t - \tau 

(i)
2 ) +B

(i)
g

\biggl[ 
w(t)
u(t)

\biggr] 
,\biggl[ 

y(t)
z(t)

\biggr] 
= C

(i)
0 x(i)(t) + C

(i)
1 x(i)(t - \tau m),
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where x(i)(t) \in \BbbR Ni , u(t) \in \BbbR nu , w(t) \in \BbbR nw , y(t) \in \BbbR ny , and z(t) \in \BbbR nz are the internal
variables, input, exogenous input, output, and performance output signals, respectively. With
this new form, nu, ny, and nz are unaffected, while nw = 2 (instead of 10 in (3.4)) and
Ni = Mi + 6 due to the additional double derivative and delay structure added. The E(i),

A
(i)
0 , A

(i)
1 , A

(i)
2 , B

(i)
g , C

(i)
0 , and C

(i)
1 matrices are real and of appropriate dimensions. Following

(3.6), the gust load model is a set of transfer functions \{ Hi\} ns
i=1 from u and w to y and z:

(3.7) Hi(s) =
\Bigl( 
C

(i)
0 + C

(i)
1 e - \tau 

(i)
m s

\Bigr) \Bigl( 
sE(i)  - A

(i)
0  - A

(i)
1 e\tau 

(i)
1 s  - A

(i)
2 e\tau 

(i)
2 s

\Bigr)  - 1

B(i).

Remark 3.1 (about the internal delays \tau 
(i)
1 and \tau 

(i)
2 , and the E(i) matrix rank). In the

considered use case, the fuselage is subdivided into three patches. Consequently, the gust

vertical displacement signal wg(t) given in (3.1) enters the model at t, t + \tau 
(i)
1 and t + \tau 

(i)
2

(0 < \tau 
(i)
1 < \tau 

(i)
2 ). To consider one single gust input signal (instead of three delayed), internal

delays are added in the model. Similarly, to be able to accurately compute the loads along the
wings, the model must take as gust input its vertical displacement as in (3.1) and its first and
second derivatives as in (3.4) [29]. Once again, to reduce the number of input disturbances to
one instead of three (position, velocity, and acceleration), the first and second derivatives of
(3.1) are embedded in the model, leading to a descriptor form as in (3.6). More specifically,
in our case, the E(i) matrix rank is then equal to Ni  - 6: two rank loss per fuselage patch
(one for the first and one for the second derivative). This descriptor form allows to decrease
the number of input variables.

The BizJet use case is described by (3.6) and (3.7). However, these relations are not
appropriate to manipulate in a control design objective for the following reasons: (i) The
internal vector dimension of each model \scrS (i) is large (i.e., Ni \approx 300), leading to medium-scale
matrices and a computational burden inappropriate with the control design; (ii) the presence
of internal delays renders the model irrational and results in an infinite number of eigenvalues,
for which dedicated tools exist but are complex to manipulate in an industrial context; and
(iii) the E(i) matrix being rank deflective, computational tools are not always appropriate.

4. Interpolatory-driven aeroservoelastic aircraft gust load--oriented reduced modeling.
In this section, the irrational models presented in section 3 will be simplified through the
interpolatory tools of section 2. The principal objective is to construct a control-oriented
model for the GLA control design, simulation, and analysis. The following subsections 4.1
and 4.2 successively describe the exact continuous-time rational approximation and frequency-
limited model order reduction of the aeroelastic business jet aircraft models. Numerical results
are presented in subsection 4.3.

4.1. BizJet aircraft rational and polynomial approximation. The first step of the process
consists in replacing each infinite4-dimensional model Hi (3.7) by a finite-order rational one
Hni

i of order ni (i = 1, . . . ns). By considering each ns continuous-time model of the considered
GLA use case, one can apply the rational approximation by interpolation using the method

4These models, embedding a state-space of order Ni are of infinite dimension due to the internal delays,
leading to an infinite number of eigenvalues.



2400 POUSSOT-VASSAL, VUILLEMIN, CANTINAUD, AND S\`EVE

recalled in subsection 2.1. Then one obtains a set of ns continuous-time rational approximated
models \{ Hni

i \} ns
i=1 equipped with realization \{ \scrS ni

i \} ns
i=1 with matrices as (2.6). Note that each of

the ns models may have a different dimension ni, this latter being automatically computed by
the rank condition given in (2.5). Here, the original models (3.7) are given in continuous time.
A standard way consists in gridding the interpolation (support points) along the imaginary axis
as it is related to the frequency response. In our case, for all configurations, the interpolating
points have been selected as follows:

(4.1) \{ zk\} 2mk=1 = \{ \imath \omega j , - \imath \omega j\} mj=1\underbrace{}  \underbrace{}  
\{ \mu j\} mj=1

\cup \{ \imath \nu i, - \imath \nu i\} mi=1\underbrace{}  \underbrace{}  
\{ \lambda i\} mi=1

,

where \omega j , \nu i \in \BbbR + are the pulsations at which one evaluates each transfer \{ Hi\} ns
i=1, with

2m = 1000. In our application, \omega j and \nu i are selected to be logarithmically spaced from 10 - 2

to 103. This choice allows to focus on the frequency range of interest. Indeed, in the case of
irrational models, the method is efficient for interpolation but not necessary for extrapolation.

In addition, as the stability of the obtained rational model \{ Hni
i \} ns

i=1 is not guaranteed
by the Loewner interpolatory procedure, a poststabilization is performed using the procedure
presented in [19]. This latter consists in projecting the rational models \{ Hni

i \} ns
i=1 onto their

closest stable model, here using the \scrH \infty -norm, leading to a set of stable models of the same
dimensions. Mathematically, given a realization \scrS associated to H \in \scrL \infty , one aims at finding
P\infty (H) \in \scrH \infty such that P\infty (H) = arg inf\bfG \in \scrH \infty | | H - G| | \scrL \infty . Technical details and assumption
can be found in [19]. Each model now shares a rational structure and is now stable and of
finite order ni for i = 1, . . . , ns. Note that here, the stability enforcement is performed since
one knows that original models are structurally and physically stable. At this point, the delay
terms are removed and traded with rational order model ni, determined by (2.5).

Remark 4.1 (about a Pad\'e delay approximation). It can be appealing to replace the delays
with a Pad\'e approximation, which preserves the gain but modifies the phase. While this is
classically performed in many applications, it is, in the authors' experience, not the most
accurate way of dealing with delays, as it leads to a significant error in the phase. In addition,
the use of Pad\'e will drastically increase the model internal vector. Therefore, the accuracy
/complexity ratio is not in favor of Pad\'e approximation.

4.2. BizJet aircraft control--oriented model reduction. As a second step and rooted
on \{ Hni

i \} ns
i=1, the obtained continuous-time rational models, one now invokes again the in-

terpolatory framework for a dimension reduction. Now we follow the approach detailed in
subsection 2.4 to reduce the model over a frequency-limited range. For the considered ap-
plication and in view of control design, it is important to reduce as much as possible the
model while staying representative. Indeed, as the controller designed later is a solution of an
optimization problem, the simpler the model is, the more efficient the optimization is.

In addition, as the GLA function should act in a given frequency range without altering
the flight control laws, it is relevant to reduce the model over a frequency-limited range [0, \omega ]
only (where \omega \in \BbbR +). The FL-ISTIA process [39] being also a fixed point procedure, its
initialization is done by selecting starting interpolating points as follows (where 0 < \omega k < \omega 
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and \omega 0 < \omega ):

(4.2)
\{ \^\kappa (0)\} rk=1 = \{ \imath \omega k, - \imath \omega k\} 

r/2
k=1 if r is even,

\{ \^\kappa (0)\} rk=1 = \{ \imath \omega k, - \imath \omega k\} 
\lfloor r/2\rfloor 
k=1 \cup \omega 0 if r is odd.

4.3. Application to the BizJet models. As an illustration, Figure 2 compares the fre-
quency and phase responses from the gust input to the wing root bending moment at 2 m
from the fuselage of the original irrational model H7 with its rational approximations Hn7

7

and frequency-limited reduced model \^H7 for one single configuration point. Sigma plot and
mismatch errors are also reported in Figure 3. All other cases are similarly obtained.

Figure 2. Gain (left) and phase (right) frequency responses of the transfer from gust to the sizing wing
root bending moment at 2 m from the fuselage: the original model \bfH 7 (solid blue line), the approximated and
approximated plus projected stable models \bfH n7

7 (dashed magenta and dash dotted black lines, respectively), and
the reduced-order model \^\bfH 7 with dimension r = 30. Upper bound of the reduction frequency band is materialized
by the vertical green dashed line.

Figure 3. Gain (left) and gain error (right) of the maximal singular frequency responses.

With reference to Figures 2 and 3, the following comments can be done. First, the rational
approximation, satisfying the tangential interpolatory conditions (2.4), allows to accurately
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capture the descriptor delayed model (3.7) gain, phase, and sigma, with a simple rational
function (here for the 7th use case, n7 = 211). Note that the projection [19] performed
afterward to force the model to be stable is also accurate. Second, the frequency-limited order
reduction still preserves a good matching in the considered frequency range, with a rational
model of dimension r = 30 only. Analyzing the bottom frame of Figure 3, the H7  - Hn7

7

(unstable) mismatch is close to machine precision up to the upper frequency limit \omega . When
projecting to obtain a stable model, the H7  - P\infty (Hn7

7 ) (stable) mismatch results in a loss of
accuracy, traded with the stability property. The reduced model \^H7 clearly is accurate below
the upper frequency bound and can be considered as simple but accurate enough for GLA
control design.

5. Interpolatory-driven sampled-time GLA function computation. Based on the reduced-
order models \{ \^Hi\} ns

i=1, we are now ready to design the GLA control function. As this control
law has to be implemented on an onboard computer sampled with a fixed step time h \in \BbbR +,
a discrete-time controller is sought. In the rest of this section, we first present the context
of discrete-time control design in subsection 5.1. Then the continuous-time \scrH \infty -norm syn-
thesis of K is briefly exposed in subsection 5.2. In subsection 5.3, the discretization problem
is introduced and is solved in the new interpolatory framework in subsection 5.4, leading to
Algorithm 5.1, being the major (and second) contribution of this paper.

5.1. Preliminary words on discrete- and continuous-time control design. In dynamical
systems and control theory, the continuous-time and discrete-time domains coexist. While
most of the tools available in one domain have a counterpart in the other, it is not unusual
that a specific application requires to switch from one domain to the other. In particular,
in the considered GLA control-oriented application, engineers start from a continuous-time
physical model set \{ Hi\} ns

i=1, simplified by a reduced continuous-time one \{ \^Hi\} ns
i=1. The latter

is then used for the design of the GLA control law. To this aim, as illustrated schematically
in Figure 4, three approaches can be conducted: (i) One may discretize the analog plants
\{ Hi\} ns

i=1 and then design a discrete control-law Kd with the same sampling period h. (ii)
Conversely, one may design an analog control-law K and then discretize it. (iii) Or, using
dedicated techniques from sampled-data systems theory (see, e.g., [12, Chaps. 12 and 13]),
one may directly synthesize Kd from \{ Hi\} ns

i=1.
While the direct nature of the latter method (iii) is appealing, it requires dedicated theo-

retical and numerical tools that are not as widespread as usual ones, especially in the industry
where this approach would require their whole control design and analysis process to be
rethought. For these reasons, one focuses here on the indirect methods that remain of prac-
tical interest and more specifically on the continuous controller, followed by a discretization.
Performing in the other ways, i.e., discretizing the model and then synthesizing the controller,
would lead to an inaccurate model response due to the low-frequency sampling imposed by
the onboard computer.

For both indirect approaches, a discretization step is required. This may have a detrimen-
tal impact with respect to the expected dynamical behavior. In that context, the availability
of an efficient discretization method is of particular interest. Here, an approach based on
the Loewner interpolatory framework, described in section 2, is used. It offers an interesting
alternative to usual discretization processes, as it enables to reach a better frequency and
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H Continous-
time plant

Hd Sampled-
time plant

Plant discretization (zoh)

Kd

Sampled-time
controller

Discrete

synthesis

K
Continuous-
time con-
troller

Controller discretization

(zoh, tustin, etc.)

Analog

synthesis

Sampled-data synthesis

Figure 4. Different paths to design a discrete control-law \bfK d from an analog plant \bfH .

time-domain matching with the continuous-time description. Before detailing this approach,
for sake of completeness, subsection 5.2 briefly presents the continuous-time GLA controller
design.

5.2. Preliminary continuous-time GLA controller design. In the considered applica-
tion, as the objective is to attenuate a worst-case amplification, the \scrH \infty -norm minimization
framework is clearly tailored. Being given the reduced continuous-time models \{ \^Hi\} ns

i=1, the
continuous-time controller K, mapping outputs y to control inputs u, as interconnected in
Figure 1, is obtained by solving the following \scrH \infty -norm problem for i = 1, . . . \~ns \leq ns:

(5.1) K = arg min
\~\bfK \in \scrK \subseteq \scrH 2

| | \scrF l(G(\^Hi), \~K)| | \scrH \infty ,

where G(\^Hi) \in \scrH \infty is the so-called generalized plant involving the input and output weight
functions (not detailed here, as they are out of the scope of this paper) and the reduced-order
models. Moreover, \scrF l(\cdot , \cdot ) denotes the lower fractional operator. The control objective thus
consists in finding the locally optimal continuous-time controller K such that (5.1) is solved,
i.e., such that the \scrH \infty -norm of the \scrF l(G(\^Hi),K) loop, mapping exogenous inputs w to perfor-
mance output z, is minimized. In the considered case, one single measurement y is considered
(the angle of attack at the front of the aircraft) with three symmetrical controllable movable
surfaces (horizontal tail, inner and outer ailerons). The performance signals to be minimized
are the sizing load output and the mismatch between the load factor without and with GLA
(in order to preserve flight mechanics behavior). In addition, one seeks this controller such
that it belongs to a subset \scrK \subseteq \scrH 2, reducing the controller search space to reduced-order
structures without direct feed-through, avoiding issues for industrial implementation. The
problem is solved by the routine developed by the authors of [6] and results in a stable mod-
erate user-defined ncth-order LTI continuous-time controller K. When referring to (5.1), one
notices that \~ns \scrH \infty -norm problems are simultaneously solved, accounting for the different
flight conditions.
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K

KdS H

u e

 - 

+

ys

y

Figure 5. Interconnection for the measurement of the discretization error between G and Gd.

5.3. Controller discretization problem and discretization error derivation. Being given
the linear continuous-time controller K, the objective is to determine, for a fixed time step
h \in \BbbR +, a discrete-time controller represented by the recurrence state-space equation \scrC d,

(5.2) xd[q + 1] = Adxd[q] +Bdyd[q] and ud[q] = Cdxd[q] +Ddyd[q],

where xd[q] \in \BbbR nd , ud[q] \in \BbbR nu , yd[q] \in \BbbR ny are the internal variables, sampled control, and
measurements signals, respectively. One seeks for (5.2) such that (i) its associated trans-
fer function Kd(z) = Cd(zInd

 - Ad)
 - 1Bd + Dd is stable, i.e., Kd \in \scrH \infty (\scrD ), and (ii) the

input-output behavior of K is well reproduced by Kd up to the Nyquist frequency. While dis-
cretization methods such as the bilinear (Tustin) one are clearly able to build a discrete-time
model satisfying (i), the input-output behavior may be quite far from the original one when
h is too large. Here, a method is proposed to build such a model by first using the Loewner
framework to interpolate a specific set of frequency data and then, projecting the resulting
model onto the stable subspace \scrH \infty (\scrD ), to enforce sampled-time controller stability.

5.3.1. Measure of the discretization error. Quantifying the error induced by the dis-
cretization of K is not trivial. Indeed, the sampled nature of Kd prevents interconnecting it
directly with the continuous K controller. Digital-to-analog converters are required. For a
sampling time h \in \BbbR +, the latter are modeled here as the ideal sampler S and holder H. Then
the error system is given by the interconnection of Figure 5, where discrete-time signals are
represented by dashed lines. Such an interconnection of continuous- and discrete-time models
is called a sampled-data system (SD).

The controller \~K = SKdH is no longer LTI but h-periodic, and consequently so is the
error K  - \~K, for which usual system norms cannot directly be applied. This problem has
been addressed in the literature for direct SD synthesis (see, e.g., [7, 12]). The recurring idea
is to use continuous lifting to transform a periodic system into a discrete-time LTI model
with infinite input and output spaces on which equivalent \scrH 2 or \scrH \infty norms can be defined.
While this framework appears well suited to evaluate K  - \~K, the infinite dimensionality of
the lifted model makes it quite technical. That is why here a more straightforward approach
based on the frequency characterization of the discretization error formulated in [12, sect. 3.5]
is considered instead. For that purpose, models for the ideal sampler and holder are recalled
in subsection 5.3.2, and the frequency error is presented in subsection 5.3.3.5

5Note that in [12], the authors use the \lambda -transform, while here, one considers the z-transform; the sign of
the exponential in the Fourier transforms of discrete signal is thus modified.
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5.3.2. Ideal sampler and holder. Let us consider a continuous-time signal v(t) and the
sampling period h. The ideal sampler S transforms v(t) into a discrete sequence vd[q] such
that vd[q] = v(qh), q \in \BbbZ . As shown in [12, Lem. 3.3.1], the Fourier transforms vd = \scrF (vd)
and v = \scrF (v) are linked as follows:

(5.3) vd(e
\imath \omega h) =

1

h

\sum 
q\in \BbbZ 

v(\imath \omega + \imath q\omega s),

where \omega s = 2\pi /h is the sampling frequency. Equation (5.3) highlights the frequency aliasing
phenomena since all the multiples of the sampling frequency are indistinguishable in the
output. Note that the sampling operator S is not bounded for any signal in \scrL 2(\BbbR ) as shown
in [11]. To be bounded, the input signal v must be restricted to the class of band-limited
\scrL 2(\BbbR ) signals, or it must be filtered by a finite-dimensional stable and strictly causal system,
i.e., an antialiasing filter.

Similarly, the holder H transforms a sequence vd[q] into a continuous-time signal v(t) such
that v(t) = vd[q], where qh \leq t < (q+1)h. The impulse response of the holder can be defined
as the difference of two unit steps delayed by h. Let

(5.4) R(s) =
1 - e - sh

sh

be the associated transfer function. Then, as shown in [12, Lem. 3.3.2], the Fourier transforms
of v and vd are linked as follows:

(5.5) v(\imath \omega ) = hR(\imath \omega )vd(e
\imath \omega h).

Back to Figure 5, coupling (5.3) and (5.5) enables to express the frequency-domain rela-
tionship between u and ys (for | \omega | < | \omega s| ):

(5.6) ys(\imath \omega ) = R(\imath \omega )Kd(e
\imath \omega h)

\sum 
q\in \BbbZ 

u(\imath \omega + \imath q\omega s).

5.3.3. A frequency-domain error. Using (5.6), one can express the frequency-domain
relationship between u and the discretization error e = y  - ys from Figure 5 as

(5.7) e(\imath \omega ) = K(\imath \omega )u(\imath \omega ) - R(\imath \omega )Kd(e
\imath \omega h)

\sum 
q\in \BbbZ 

u(\imath \omega + \imath q\omega s).

Assuming that u is band-limited, i.e., that u(\imath \omega ) = 0 for | \omega | > \omega s/2 = \omega N , (5.7) becomes
e(\imath \omega ) =

\bigl( 
K(\imath \omega ) - R(\imath \omega )Kd(e

\imath \omega h)
\bigr) 
u(\imath \omega ). This readily suggests to consider

(5.8) e\infty (K,Kd) = max
\omega <\omega N

\bigm| \bigm| \bigm| K(\imath \omega ) - R(\imath \omega )Kd(e
\imath \omega h)

\bigm| \bigm| \bigm| 
to quantify the discretization error. This frequency-domain characterization of the error in-
spired the novel discretization process presented in the next section. For the MIMO case,
the absolute value in (5.8) may be replaced by the 2-norm.
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5.4. Application of the Loewner framework for discretization. Now we are ready to
describe the interpolatory-driven discretization process allowing to getKd from the continuous-
time controller K.

5.4.1. Principle. Being given the considerations of subsection 5.3, let us consider the
control transfer function K \in \scrH \infty to be discretized at the sampling time h. Building a ncth-
order discrete-time model Kd that matches the input-output behavior of K, the frequency-
domain characterization of the discretization error (5.8) suggests that Kd must be such that

(5.9) R(\imath \omega )Kd(e
\imath \omega h) = K(\imath \omega )

for | \omega | < \omega N . Equation (5.9) represents an infinite number of interpolation conditions that
may be approximated by sampling the interval [0, \omega N ] such that, for k = 1, . . . , 2m,

(5.10) R(\imath \omega k)Kd(e
\imath \omega kh) = K(\imath \omega k).

Such a model can be built by applying the Loewner interpolation framework recalled in sub-
section 2.1 to the following set of frequency data:

(5.11)
\Bigl\{ 
e\imath \omega kh, R(\imath \omega k)

 - 1K(\imath \omega k)
\Bigr\} 2m

k=1
,

where e\imath \omega kh are the new interpolating points and R(\imath \omega k)
 - 1K(\imath \omega k) the new function to evaluate.

With reference to (2.1), e\imath \omega kh are the support points zk. Then, by splitting them in the same
ways, R(\imath \omega k)

 - 1K(\imath \omega k) represents the couple vH
j and wi (these variables are obtained by

evaluating R(\imath \omega k)
 - 1K(\imath \omega k) at e\imath \omega kh for 0 \leq \omega k \leq \omega N , following (5.11)). With the notations

of subsection 2.1, one obtains the mth-order Km
d controller that can be lowered without loss

of interpolatory accuracy to Kn
d (n < m). Obviously, should the order nc be lower than the

McMillan order n of the exact interpolating controller, then the interpolation conditions (5.10)
will not be perfectly satisfied, but the controller will keep its dimension.

5.4.2. About the stability of the discretized model. When applied to the ``hold"" con-
troller R(\imath \omega k)

 - 1K(\imath \omega k), the Loewner framework allows to construct a rational function in
barycentric form that ensures interpolatory conditions at the support points zk. However, no
pole location control can be achieved. The singularities of the resulting interpolated controller
depend on the support points ordering and/or singular value decomposition. Therefore, even
if K \in \scrH 2 (or \scrH \infty ), the transfer function Kd obtained via the process described above may
not lie in \scrH \infty (\scrD ), which is a major drawback in comparison to the bilinear of backward
discretization schemes.

To overcome this issue, one can apply the same process as in [15] and as performed in
subsection 4.1 (in continuous time). It consists in projecting the unstable model Kd onto
\scrH \infty (\scrD ) so that the \scrL \infty -norm between Kd and its projection is minimized. This is the so-
called Nehari problem, for which solutions have been given in the continuous-time domain [14]
and in the discrete-time domain; see, e.g., [21]. Let us denote by P\infty this projection operator
so that if Kd \in \scrL \infty (\partial \scrD ), then P\infty (Kd) \in \scrH \infty (\scrD ) minimizes \| Kd  - P\infty (Kd)\| \scrL \infty .

Note that in the sampled-time case, the order of P\infty (Kd) depends on the number of
unstable poles of Kd and is lower than nc when Kd is unstable. In particular, if Kd has n+
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Algorithm 5.1 Loewner-driven discretization.

Require: A continuous-time model K \in \scrH \infty (\BbbC +), a sampling time h > 0, an upper bound
\=n of the desired order, and a number m of interpolation points.

1: Sample the interval ]0, \omega N [ in 2m points \omega k

2: Evaluate R(\imath \omega k)
 - 1K(\imath \omega k)

3: Apply Loewner to the data set (5.11) to get a first model Km
d that matches all the data

and get the underlying minimal McMillian order n
4: Set r = min(n, \=n)
5: Reduce Kn

d to Kr
d using any interpolation method

6: Project Kr
d onto a stable subspace, i.e., compute the ncth-order Kd = P\infty (Kr

d)
7: return the model Kd \in \scrH \infty (\scrD ) of order nc \leq r \leq \=n

stable and n - unstable poles and p is the multiplicity of the largest unstable Hankel singular
value, then P\infty (Kd) has order n++n -  - p (see [21]). To avoid this issue and for a numerically
more robust approach, suboptimal projection methods may alternatively be considered (see,
e.g., [19]).

Remark 5.1 (alternative approach). A similar problem can be considered using the \scrL 2-
norm and is actually much easier to solve considering the decomposition \scrL 2(\partial \scrD ) = \scrH 2(\scrD )\oplus 
\scrH 2(\scrD ). The solution is simply obtained by discarding the unstable part of the model. However,
this solution has generally a greater impact on the frequency behavior of the model, which is
not desirable here.

5.4.3. Loewner-driven discretization. The Loewner-driven discretization process, stand-
ing as the major theoretical contribution of this paper, is applied to the controller and is
summarized in Algorithm 5.1. The following comments can be added:

\bullet The reduction step from Kn
d to Kr

d (step 5) may also be achieved by standard model
approximation techniques as the one presented in subsection 2.3 or, more interestingly,
using the frequency-limited version of subsection 2.4. Then Kr

d should be projected
on \scrH \infty (\scrD ), and finally a stability preserving model reduction method could be used
to obtain Kd.

\bullet As both Kr
d and Kd are easily available during the process, \| Kr

d  - Kd\| \scrL \infty can be
evaluated to get an estimation of the discretization error e\infty (K,Kd) in (5.8).

\bullet Similarly, when r = n (i.e., n < n), computing \| Kn
d  - Kr

d\| \scrL \infty = \| Kn
d  - Kn

d\| \scrL \infty gives
insights on whether the maximal allowed order n is enough to ensure a low error.

\bullet If Kr
d is unstable, then step 6 leads to a loss of order (see subsection 5.4.2). Therefore,

when nc < r (which is likely to happen6), r should be increased above \=n so that
P\infty (Kd) is of order \=n, thus avoiding any loss of accuracy.

It should also be noted that Algorithm 5.1 does not exploit the state-space structure of
K and only requires frequency data from it. Therefore, as presented in the preliminary work
[38], the approach may be applied to a wider class of models than just those described by a
state-space realization. Algorithm 5.1 is applied on the obtained continuous-time GLA con-

6Indeed, one tries to approximate data coming from an infinite-dimensional model by a rational one. A
large-order r is generally required to achieve an exact interpolation.
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Figure 6. Comparison of the sigma plot of different controllers: the continuous-time one \bfK (solid blue line),
the discrete-time one obtained with backward method \bfK zoh

d (dotted black line), the discrete-time one obtained
with bilinear method \bfK tus

d (dash dotted magenta line), and the discrete-time one obtained with the interpolatory
method \bfK d (dashed red line) including holder.

Figure 7. Gain (left) and phase (right) errors: comparison of the Bode plot of all the controllers' transfers
for different discretization methods with the continuous-time one \bfK with holder. The discrete-time one obtained
with backward method \bfK zoh

d (dotted black line), with bilinear method \bfK tus
d (dash dotted magenta line), and with

interpolatory method \bfK d (dashed red line).

troller. The obtained sampled-time controller sigma plot is shown in Figure 6, comparing
the responses of the continuous-time controller K interconnected with a holder with different
sampled controllers obtained with different methods (but same order nc). Figure 7 reports the
gain and phase mismatches that are obtained for each of the SISO transfers of the different
sampled controllers.

With reference to Figures 6 and 7, one observes that the obtained Kd well reproduces
the original controller K behavior up to the Nyquist frequency. The bilinear discretization
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Ktus
d tends to compress the responses. Moreover, both bilinear and backward importantly

modify the phase. This accurate restitution obtained by Kd is first justified by embedding
the holder delay dynamics in the discretization and thus outperforms the classic ones. In
addition, the Loewner interpolation allows to control the accuracy of the rational interpolant.
More important effects on the closed loop will be presented in the conclusion in section 6.

6. Conclusions. In this paper, a complete end-to-end approach for the construction of
a GLA control function has been presented, applied, and implemented on a real-life generic
BizJet aircraft use case simulator, standing as another important contribution. As a conclusion
to this paper, subsection 6.1 presents the obtained performances when plugging the discrete-
time controller into the complete industrial simulator, including the time-delayed continuous-
time model (hundreds of simulations are performed). As the proposed design scheme can be
readily applied to any linear dynamical system and not only aircraft control, in subsection 6.2,
we summarize the main methodological contributions.

6.1. BizJet aircraft GLA function performances. The main objective of GLA is to reduce
the so-called load envelope, i.e., the load amplification along the wingspan in response to a gust
signal family. This alleviation feature is presented in Figure 8 (left) for different discretized
controllers, with the same dimension and sampling-time value h.
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Figure 8. Left: gust load attenuation envelope gain \scrE (xi) resulting to the interconnection presented in
Figure 1 for different GLA controllers: the continuous-time one \bfK (red line), the discrete-time are obtained
with backward method \bfK zoh

d (purple line), with bilinear method \bfK tus
d (cyan line), and with the interpolatory

method \bfK d (green line). Right: time-domain response of the interconnection Figure 1 without (solid blue line)
and with (dashed red line) the GLA function to a pilot stick input (solid black line).

While the ``optimal"" GLA level obtained by the continuous-time controller K leads to
attenuation between 6\% and 13\% (except at the wingtip, where the loads are very small),
the sampled-time versions with a sampling value h fixed by the available onboard computer
clearly deteriorate the performances. Still, depending on the discretization method, one clearly
observes an important gain when using the proposed discretization approach of Algorithm 5.1
with respect to the standard ones. In addition, the proposed load alleviation should not result
in a change of flight performance. This is ensured by the control design and illustrated in
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Figure 8 (right), where the normalized load factor variation in response to an elevator request
\delta  \star mc(t) results in similar behaviors with and without the GLA function.

6.2. General contribution overview. The paper proposes an end-to-end solution to the
GLA control design and implementation. This stands as the main contribution. The im-
portant load attenuation levels obtained result from (i) the use of an exact (and reduced)
aeroservoelastic model including gust delays and derivative actions contribution and (ii) the
development of a novel discretization method to discretize the controller. All the proposed
steps are grounded on rational interpolatory methods. Indeed, the principal message of the
article is to place interpolatory methods at the center of the modeling, design, and discretiza-
tion steps. Moreover, even if centered on the discretization of the GLA function, Algorithm 5.1
provides a complete solution to discretize any linear dynamical model or controller. This last
result provides an interesting alternative to the classical literature methods.
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